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TBufferMerger 

▶ Parallel data processing without need for a merge step at the end

▶ First available in ROOT 6.10

▶ Use cases
● Facilitate parallel dataset creation (MC generation, RECO, etc)

● Save result of RDataFrame analysis in parallel with snapshot action
(see talks by Enrico and Danilo)

● Not meant for merging existing files, for that there is already hadd

▶ Main ideas
● Leverage the existing classes TMemFile and TFileMerger

● Create an interface similar to single-threaded case to ease conversion
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Programming Model
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void Fill(TTree *t, int init, int count); // same as on the left

int WriteTree(size_t nEntries, size_t nWorkers)
{
   size_t nEntriesPerWorker = nEntries/nWorkers;
   
   ROOT::EnableThreadSafety();
   ROOT::Experimental::TBufferMerger  merger("myfile.root");

   std::vector<std::thread> workers;

   auto workItem = [&](int i) {
         auto f = merger.GetFile();
         TTree t("mytree", "mytree");       
         Fill(t, i * nEntriesPerWorker, nEntriesPerWorker);
         f->Write(); // Send remaining content over the wire 
      };

   for (size_t i = 0; i < nWorkers; ++i)
      workers.emplace_back(workItem, i);

   for (auto&& worker : workers) worker.join(); 

   return 0;
}

void Fill(TTree &tree, int init, int count)
{
   int n = 0;

   tree->Branch("n", &n, "n/I");

   for (int i = 0; i < count; ++i) {
      n = init + i;
      tree.Fill();
   }
}

int WriteTree(size_t nEntries)
{

   TFile f("myfile.root");
   TTree t("mytree","mytree");

   Fill(&t, 0, nEntries);
   
   t.Write();

   return 0;
}

Sequential usage of TFile Parallel usage of TFile with TBufferMerger



TBufferMerger: First Implementation
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TBufferMerger: Current Implementation
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Advantges of new implementation
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▶ Agnostic about model of parallelism
● Usable both with threads as well as tasks

● Integrates better with experiment framework

● No oversubscription due to compression work in merging thread

▶ Less context switches, lock contention → better performance

▶ Visible gains seen in
performance monitoring
(see talk by O. Shadura)



TBufferMerger Single Branch Benchmark

▶ Create ~1GB of simple data and write out to different media 
using different compression algorithms

▶ Synthetic benchmark that exacerbates the role of I/O
by doing light amount of work (generating a random number)

▶ Test environment 
● Intel® Core™ i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)
● Write out data to HDD, NVMe SSD, DRAM
● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression
● Compare ROOT 6.12 (light colors) and 6.14 (dark colors)
● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build
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Single Branch Benchmark: Runtime
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light colors = ROOT 6.12, dark colors = ROOT 6.14



Single Branch Benchmark: Speedup
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light colors = ROOT 6.12, dark colors = ROOT 6.14



TBufferMerger Multi Branch Benchmark

▶ Create ~1GB of complex data and write out to different media 
using different compression algorithms

▶ Synthetic benchmark that enhances the role of the I/O 
subsystem by creating variable number of branches

▶ Test environment 
● Intel® Core™ i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)
● Write out data to HDD, NVMe SSD, DRAM
● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression
● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release buildl
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▶ Branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)
▶ Test creates 10 branches, each with a vector of 10 Events

Multi Branch Benchmark: Runtime

11All figures using ROOT master branch



▶ Branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)
▶ Test creates 10 branches, each with a vector of 10 Events

Multi Branch Benchmark: Speedup

12All figures using ROOT master branch



TBufferMerger
Performance 

Analysis
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parallel data
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▶ ROOT can saturate any 
media type with only a few 
threads if not CPU bound

▶ Scalability can still be an 
issue due to many guards 
on ROOT’s global lock

▶ Need a solution for 
backpressure to avoid 
excessive memory 
consumption

startup time

output to 
hard disk

output to 
memory



CMS Reconstruction with TBufferMerger

14CMS and ROOT I/O, Dan Riley, ROOT I/O Workshop June 20th, 2018



Summary

▶ Benchmarks show good scalability when CPU bound

▶ Output disk performance has big impact on runtime

▶ Ivestigating how to best fix identified performance issues
● ROOT caches class streaming information when first needed

● Requires write-lock during computation, read-lock for access

● Impacts scalability when using large numbers of threads (10+)
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