
https://root.cern

ROOT
Data Analysis Framework

Writing ROOT Data in Parallel
with TBufferMerger

G. Amadio
for the ROOT Team

https://root.cern

TBufferMerger

▶ Parallel data processing without need for a merge step at the end

▶ First available in ROOT 6.10

▶ Use cases
● Facilitate parallel dataset creation (MC generation, RECO, etc)

● Save result of RDataFrame analysis in parallel with snapshot action
(see talks by Enrico and Danilo)

● Not meant for merging existing files, for that there is already hadd

▶ Main ideas
● Leverage the existing classes TMemFile and TFileMerger

● Create an interface similar to single-threaded case to ease conversion

2

Programming Model

3

void Fill(TTree *t, int init, int count); // same as on the left

int WriteTree(size_t nEntries, size_t nWorkers)
{
 size_t nEntriesPerWorker = nEntries/nWorkers;

 ROOT::EnableThreadSafety();
 ROOT::Experimental::TBufferMerger merger("myfile.root");

 std::vector<std::thread> workers;

 auto workItem = [&](int i) {
 auto f = merger.GetFile();
 TTree t("mytree", "mytree");
 Fill(t, i * nEntriesPerWorker, nEntriesPerWorker);
 f->Write(); // Send remaining content over the wire
 };

 for (size_t i = 0; i < nWorkers; ++i)
 workers.emplace_back(workItem, i);

 for (auto&& worker : workers) worker.join();

 return 0;
}

void Fill(TTree &tree, int init, int count)
{
 int n = 0;

 tree->Branch("n", &n, "n/I");

 for (int i = 0; i < count; ++i) {
 n = init + i;
 tree.Fill();
 }
}

int WriteTree(size_t nEntries)
{

 TFile f("myfile.root");
 TTree t("mytree","mytree");

 Fill(&t, 0, nEntries);

 t.Write();

 return 0;
}

Sequential usage of TFile Parallel usage of TFile with TBufferMerger

TBufferMerger: First Implementation

4

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Output
Thread

Disk

Data Queue

Write()

TBufferMerger

Data
BufferData

BufferData
Buffer

TBufferMerger: Current Implementation

5

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

Advantges of new implementation

6

▶ Agnostic about model of parallelism
● Usable both with threads as well as tasks

● Integrates better with experiment framework

● No oversubscription due to compression work in merging thread

▶ Less context switches, lock contention → better performance

▶ Visible gains seen in
performance monitoring
(see talk by O. Shadura)

TBufferMerger Single Branch Benchmark

▶ Create ~1GB of simple data and write out to different media
using different compression algorithms

▶ Synthetic benchmark that exacerbates the role of I/O
by doing light amount of work (generating a random number)

▶ Test environment
● Intel® Core™ i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)
● Write out data to HDD, NVMe SSD, DRAM
● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression
● Compare ROOT 6.12 (light colors) and 6.14 (dark colors)
● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build

7

Single Branch Benchmark: Runtime

8
light colors = ROOT 6.12, dark colors = ROOT 6.14

Single Branch Benchmark: Speedup

9
light colors = ROOT 6.12, dark colors = ROOT 6.14

TBufferMerger Multi Branch Benchmark

▶ Create ~1GB of complex data and write out to different media
using different compression algorithms

▶ Synthetic benchmark that enhances the role of the I/O
subsystem by creating variable number of branches

▶ Test environment
● Intel® Core™ i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)
● Write out data to HDD, NVMe SSD, DRAM
● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression
● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release buildl

10

▶ Branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)
▶ Test creates 10 branches, each with a vector of 10 Events

Multi Branch Benchmark: Runtime

11All figures using ROOT master branch

▶ Branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)
▶ Test creates 10 branches, each with a vector of 10 Events

Multi Branch Benchmark: Speedup

12All figures using ROOT master branch

TBufferMerger
Performance

Analysis

13

parallel data
generation

I/O

▶ ROOT can saturate any
media type with only a few
threads if not CPU bound

▶ Scalability can still be an
issue due to many guards
on ROOT’s global lock

▶ Need a solution for
backpressure to avoid
excessive memory
consumption

startup time

output to
hard disk

output to
memory

CMS Reconstruction with TBufferMerger

14CMS and ROOT I/O, Dan Riley, ROOT I/O Workshop June 20th, 2018

Summary

▶ Benchmarks show good scalability when CPU bound

▶ Output disk performance has big impact on runtime

▶ Ivestigating how to best fix identified performance issues
● ROOT caches class streaming information when first needed

● Requires write-lock during computation, read-lock for access

● Impacts scalability when using large numbers of threads (10+)

15

