
Continuous Performance Benchmarking Framework for
ROOT

Oksana Shadura, Vassil Vassilev, Brian Paul Bockelman
oksana.shadura@cern.ch, vvasilev@cern.ch, bbockelm@cse.unl.edu

CHEP 2018, Sofia, Bulgaria

Motivation

Foundational software libraries such
as ROOT are under intense pressure
to avoid software regression, includ-
ing performance regressions. Contin-
uous performance benchmarking, as
a part of continuous integration and
other code quality testing, is an in-
dustry best-practice to understand how
the performance of a software product
evolves over time. We present a frame-
work, built from industry best prac-
tices and tools, to help to understand
ROOT code performance and monitor
the efficiency of the code for a sev-
eral processor architectures. It addi-
tionally allows historical performance
measurements for ROOT I/O, vector-
ization and parallelization sub-systems.

Project Goals

We aim to provide:
1 Continuous performance monitoring
of ROOT components;

2 Speculative performance monitoring
on opened pull requests (PR);

3 Rich and customizable visualizations
to aid performance analysis.

Implementation

We utilize the Google benchmarking
library[1] to execute micro benchmarks
of selected hotspot functions in ROOT
and related libraries. This provides
detailed data measurements, including
memory usage and CPU instruction
counters. Additionally, the framework
manages traditional benchmarking pit-
falls via repeating unstable benchmarks
and providing a stable performance
environment over time. The perfor-
mance data points from continuous
benchmarking are fed into an InfluxDB
database and provided to the developer
community via a Grafana-based dash-
board. This performance benchmark-
ing framework, built on generic and
flexible infrastructure, is meant to be
reusable by other projects. The tool
can be connected to Jenkins or other
similar services as shown in Fig 1.

Figure 1: Jenkins – ROOTBench Flow.

Results

We have defined a basic set of measurements: Real Time (RT); CPU Time and
RSS memory footprint. The set of performance indicators could be expanded with
custom ones. Google Benchmark enables multi-threading analyses and addition of
custom parameters such as number of branches in a generated TTree.

ROOTBench: Continious perf. monitoring of ROOT

Figure 2: Performance improvements (enhancements in runtime) in Interpreter benchmarks

Figure 3: Memory Footprint Comparison Between ROOT runtime_cxxmodules and pch Features

Figure 4: TFormula Speedup.

Figure 5: Threading Improvements in TBufferMerger

Figure 6: Memory Footprint of clang-, icc- and gcc-compiled ROOT Running HSimple

Figure 7: RT comparison of vectorized and scalar code in GenVector::Mag()

Fig 2-7 show several real-world examples:
• Interpreter – implementation of Bloom filter as per PR2093, PR2137 and
PR2204 (Fig 3)

•TFormula – remove debug check in TFormula as per from PR2017 (Fig. 4)
•TBufferMerger – remove callback functionality to avoid over subscription of the
machines as per PR2245 (Fig. 5)

•Hsimple benchmark – comparison of memory footprint of ROOT compiled with
different compilers (Fig 6)

•GenVector – comparison of scalar and vectorized implementation in GenVector
library (Fig. 7)

Conclusion

The protype is very functional and it
has been often used to find performance
degradation. Performance sensitive
code can be monitored at the cost of a
standard pull requests against the root-
bench GitHub repository. Several ex-
tenal benchmarking contributions have
been submitted some of them track
TMVA and RDF components. We
have enumerated several important fu-
ture improvements:
•Enable the current infrastructure to
work on pull requests;

• Introduce alerts if metrics have gone
beyond defined tresholds;

•Complement performance graphs
with performance flame graphs;

• Introduce more benchmarks
statistics to stabilize the RT metrics;

• Introduce performance node
monitoring to monitor regressions in
the host hardware to reduce noise;

• Implement versioning of dashboards
(dashboards auto generation via JS).

Performance of large-scale systems is
fragile and can vary on the different
systems. It is vital for the projects
to offer a set of tools and benchmarks
allowing coders to reason about per-
formance. We hope ROOTBench is
a step towards recognizing and solv-
ing the problem ensuring better sus-
tainability of HEP Software.

Acknowledgement

The presented work was funded by
IPCC-ROOT[2] and DIANA-HEP [3].
The authors would like to thank
Openlab [4] for providing dedicated
machines for continuous performance
monitoring.

References

[1] Google benchmark.
https:
//github.com/google/benchmark.git.

[2] Ipcc root.
https://ipcc-root.github.io/.

[3] Diana-hep.
http://diana-hep.org/.

[4] Openlab.
https://openlab.cern/.

[5] Root benchmark project.
https://github.com/root-project/
rootbench.git.

[6] Root project.
https://github.com/root-project/
root.git.

https://github.com/root-project/root/pull/2093
https://github.com/root-project/root/pull/2137
https://github.com/root-project/root/pull/2204
https://github.com/root-project/root/pull/2017
https://github.com/root-project/root/pull/2245
https://github.com/google/benchmark.git
https://github.com/google/benchmark.git
https://ipcc-root.github.io/
http://diana-hep.org/
https://openlab.cern/
https://github.com/root-project/rootbench.git
https://github.com/root-project/rootbench.git
https://github.com/root-project/root.git
https://github.com/root-project/root.git

