
CHEP 2018, Sofia, Bulgaria

Optimizing Frameworks’ Performance
Using C++ Modules-Aware ROOT

Yuka Takahashi, Vassil Vassilev, Raphael Isemann{
yuka.takahashi, vvasilev, raphael.isemann

}
@cern.ch

1. Introduction
We will present our results and challenges
with C++ modules in ROOT. ROOT was ex-
tended with experimental support for using
C++ modules during runtime, with aims to
reduce it’s memory usage and improve its
correctness.

2. C++ Modules in a Nutshell
• Header information is stored in precom-

piled PCM files
• No more header parsing during ROOT’s

runtime
In C/C++, the interface of a library is ac-

cessed by including the appropriate header
files:
# inc lude < s t d i o . h>

These textual includes cause well-known
problems:
• Compile-time scalability: #include is

copying the contents to the includer’s
code, so the parser has to reparse the
same common header files multiple times,
which is expensive.

• Fragility: Textual includes are influenced
by previously defined macros. For ex-
ample, macro PI is #defined in Rcpp li-
brary. Including this library while using
local variable PI will end up in a redefini-
tion error.

C++ modules is a mechanism to boost com-
pilation time by precompiling headers into
PCM files, where AST information can be
lazily loaded.

3. From C++ Modules to Runtime C++
Modules

Figure 1: Runtime Modules (pcms). Each
PCM file (E.g. Core.pcm) corresponds to a
library (E.g. libCore.so).

C++ modules are able to reduce compi-
lation times. However, the compilation
scalability issues in C/C++ becomes run-
time issues for an interpretative environ-
ment which ROOT provides. They span
from slow prompt to slow IO.

4. Advantages over the Status Quo

Figure 2: Precompiled Headers (PCH). In-
formation of the header is stored in one file.

PCH files are precompiled header files and
work similar to C++ modules. The advan-
tage of modules over PCH is that they can
be used by experiments. Experiments are
still using textual includes as PCH only cov-
ers ROOT. PCH cannot be exported to ex-
periments because of various technical limi-
tations.

5. Results
5.1 Perfomance

Figure 3: CPU Time required to run se-
lected tutorials. The first column is display-
ing ROOT’s time to start into an empty shell.

Figure 4: Residential memory used to run
tutorials.

Fig.3 and Fig.4 are the performance re-
sults we receive from modules, compared
to textual headers. The results are coming
from synthetic benchmarks close to the ex-
periment software stacks and in particular
CMSSW.

5.2 Correctness
PCH:
$ bin/root . exe − l
root [ 0 ] gMinuit
IncrementalExecutor : : executeFunct ion :
symbol ’ gMinuit ’ unresolved while
l i n k i n g [ c l i n g i n t e r f a c e funct ion ] !

Runtime Modules:
$ bin/root . exe − l
root [ 0 ] gMinuit
( TMinuit * ) n u l l p t r

Runtime Modules are supporting more
features than PCH. For example, gMinuit
is an extern variable which cannot be au-
toloaded by ROOT at the moment. How-

ever, with modules, we can automatically
resolve symbols and cases like those are
now correctly handled.

6. Implementation

Figure 5: Visualization of ROOT interpreter
core.

As shown in Fig.5, we are developing
and using LLVM/Clang implementation of
C++ modules, collaborating with develop-
ers from Google and Apple. Cling is a C++
interpreter developed by CERN, and root-
cling is a dictionary generator for ROOT. We
are implementing runtime modules in these
parts while integrating ROOT with them.

7. Roadmap
• Compile ROOT with C++ modules

Status: Completed
• Compile CMSSW with C++ modules

Status: Work in progress
• Use runtime C++ modules in ROOT

Status: Mostly Done
• Use runtime C++ modules in experiments

Status: Work in progress
To summarize, runtime modules are

mostly working, but need work to get bet-
ter performance.

8. Conclusion
Here we briefly introduced our experimen-
tal runtime C++ modules support in ROOT
and how it will affect experiments’ software
stacks. Modules are not yet competent com-
pared to PCH, but are more flexible and
have clear advantage over texual includes.

9. Future work
Runtime modules are still an experimental
feature. Our ultimate goal is to make it de-
fault in ROOT and in experiments:
• Stabilize modules behavior and tests
• Adoption by experiments and other ROOT

users
• Improve performance of loading modules

Further Information
• https://clang.llvm.org/docs/Modules.html
• https://root.cern.ch/
• https://root.cern.ch/cling


