HSF Software Forum

#Container

Manuel Schiller

University of Glasgow

July 18th, 2018

M. Schiller (Glasgow) SOAContainer

July 18th, 2018

1/28 Wish

outline

outline

m AOS and SOA
m SOAContainer framework
m how code looks
m fields and skins
m views
m zipping views

B summary

M. Schiller (Glasgow) SOAContainer July 18th, 2018 2/28 %

introduction SOA basics

SOA basics

SOA basics

M. Schiller (Glasgow) SOAContainer July 18th, 2018 3/28 %

introduction SOA basics

AOS and SOA

AOS “

8
%
<

SOA m m m m m m m m

Px (PX | PX || PX ||PX | PX | PX | PX

PY |PY |PY |(|PY (|PY |PY |PY | PY

Pz | PZ |PZ (| PZ (|PZ |PZ |PZ |PZ

m SOA has advantages over AOS when processing vectors of objects
m CPU and compiler like to vectorise SOA, cache loves it!

M. Schiller (Glasgow) SOAContainer July 18th, 2018 4/28 %

SOA introduction

introduction

SOA basics

SOA |m

px

px

px

px

px

px

px

px

PY

PY

PY

PY

PY

PY

PY

Pz

Pz

Pz

Pz

Pz

Pz

Pz

Pz

std: :tuple<floats,

floats, floats,

m SOA doesn’t have objects in memory
m it has bits of objects scattered in memory

m tuples of references model this quite naturally
m but user interface is terrible...

M. Schiller (Glasgow)

floats, floats
floats, floats>

SOAContainer

July 18th, 2018

5/28 ik

introduction SOA implementation: fields

SOA implementation

HEE

e [oy [z [m [« |

SOAFIELD_TRIVIAL(f_m, m, £loat);

SOA [m |m [mim|m|m |m|m

struct £m {

floate x() { /* ... */}
vl lelse v [y v |y t/:;nscfloat&m()(/"..,"/)

Px | pPx | pX || px |pX |pX |pX |pX

PY |PY |PY | PY ||PY|PY |PY |PY

Pz | Pz |PZ | PZ |[PZ (PZ (PZ |PZ

m use fields to describe
m type
m name of getters/setters
m other operations on single data item

M. Schiller (Glasgow) SOAContainer July 18th, 2018 6 /28 %

introduction SOA implementation: skins

SOA implementation

b [[v

Px [Py Pz

- []

SOAFIELD_TRIVIAL(f_m, m, float);

SOA [m|n|n|m | |n|(m|m

Px | Px | px || px |[PX | PX | PX | pX

PY |PY |PY | PY ||[PY|PY |PY |PY

Pz [Pz |pz | Pz Pz |PZ |PZ |PZ

SOASKIN (MassPoint, £.m, £ x, f.y, £z, f_px, £py, £pz) {
float r2()
{ return x() * x() + y() *y() + 20 * z0; }
float p2()
{ return px() * px() + py() * py() + pz() * pz(); }

Y

m use a skin to describe
m which fields make up an SOA object
m give the underlying tuple a nice interface
m gets all the methods defined in the fields
m can define methods that access more than one field

M. Schiller (Glasgow) SOAContainer July 18th, 2018 7/28 W"]

introduction SOA implementation aims

m exploiting modern CPUs/GPUs is hard enough
m SO0AContainer should help you try SOA code quickly, with low barrier
of entry
m code should be readable, and do what it says
m writable by experts and non-experts alike
m produce reasonable code to start with (profile, optimize later)

m will not magically solve your performance problems
m brain not outdated yet: need good idea and right algorithm
m may still want to look at assembly to judge if compiler needs help
(simpler loops, break dependencies, ...)
m compilers may not autovectorise the way you want them to

— let’s see how S0AContainer looks in practise!

M. Schiller (Glasgow) SOAContainer July 18th, 2018 8/28 %

SOA examples
SOA examples

SOA examples

M. Schiller (Glasgow) SOAContainer July 18th, 2018 9/28 %

SOA examples trivial fields and skins

trivial fields and skins

first step: define data (members)

namespace MyPoint {
// a field struct x: type float, accessors: (const) float& x() (const)
SOAFIELD_TRIVIAL(x, x, float); // field name, accessor name, type
SOAFIELD_TRIVIAL(y, y, float); // same for y, z
SOAFIELD_TRIVIAL(z, z, float);
// make a skin Point, with fields x, y, z
SOASKIN_TRIVIAL(PointSkin, x, y, 2);

m defining trivial fields and skins is easy

m trivial fields just have getters/setters
m trivial skins are just the sum of their fields

m both fields and skins are types
(although you don’t really want to read their definitions)

m the skin keeps a list of member fields

m itis a good idea to keep a skin and its fields in a common namespace

M. Schiller (Glasgow) SOAContainer July 18th, 2018 10 /28 %

SOA examples trivial fields and skins

using SO0A::Container

namespace MyPoint {
// fields - you saw these on the last slide
SOASKIN_TRIVIAL(PointSkin, x, y, z);

}

using namespace MyPoint;
// define a container - std::vector as underlying storage
SOA ::Container<std::vector, PointSkin> c;
c.reserve(10);
// fill the container with sth.
for (unsigned i = 03 i < 10; ++i)
c.emplace_back(1.f * i, 2.f * i, 3.f * i); // x, y, 2
// sort
std::sort(c.begin (), c.end (),

1« & a, & b) { return a.x() < b.xQ; 1);
// print
for (el: ¢) {

std:scout << "point.(" << el.x() << ",." << el.y() << ", " <<

el.z() << ")" << std::zendl;
}
c.clear QO
std::cout << "coiso

<< (c.empty () ? "empty" : "full") << std::endl;

m SOA::Container has the interface of std::vector
m you know how to use it

M. Schiller (Glasgow) SOAContainer

July 18th, 2018

11/ 28

SOA examples complex fields

complex fields
m sometimes, having just a getter and a setter isn’t enough

namespace MyHit {

// fields ...

SOAFIELD(StripNo, unsigned, // field name, type
SOAFIELD_ACCESSORS(stripNo); // getters and setters named stripNo
// we define our own methods:
// apparently, odd strips 768 and above are noisy
bool isNoisy () noexcept
{ return (this->stripNo() >= 768) && (this->stripNo() & 1); }

)i
// ... more fields
)
m the SOAFIELD macro does the heavy lifting
m SOAFIELD_ACCESSORS(accname) reduces typing for standard
getters/setters

m you can of course also code your own:
namespace MyHit {
SOAFIELD(StripNo, unsigned, // field name, type

type stripNo () noexcept { return this->_get(); }
void setStripNo(unsigned strip) noexcept { this->_get() = strip; }
bool isNoisy () noexcept

{ return (this->stripNo () >= 768) && (this->stripNo() & 1); }

)3

M. Schiller (Glasgow) SOAContainer July 18th, 2018 12 /28 %

SOA examples complex skins

complex skins

m trivial skins are just the sum of their fields’ methods
m sometimes, you need more than that:

namespace Point {
SOAFIELD_TRIVIAL(x, x, float);
SOAFIELD_TRIVIAL(y, y, float);
struct rphi_tag {};
SOASKIN(Skin, x, y) {
// inherit default constructors, assignment operators from underlying tuple
SOASKIN_INHERIT_DEFAULT_METHODS(Skin); // name of skin class
// our own constructors
Skin(rphi_tag, float r, float phi) :
Skin(r * std::cos(phi), r * std::sin(phi))

{}

// our extra methods

float r2 () noexcept

{ return this—>x() * this->x() + this->y() * this—>y(Q; }
float r() noexcept { return std::sqrt(r20Q); }
float phi() noexcept

{ return std::atan2(this->y (), this->x()); }
b
}

m complex skins like the one above let you do pretty much anything
you want...

M. Schiller (Glasgow) SOAContainer July 18th, 2018 13 /28 %

views and zips
views and zips

views and zips

M. Schiller (Glasgow) SOAContainer July 18th, 2018 14 / 28 %

views and zips

views (1/2)

m a view is a fixed size sequence of (some fields of) a container
m every SOA container is also a view
m think of SOA container without push_back, emplace_back, insert,
erase, clear
m you can take a container/view and extract only some fields

namespace MyPoint {
SOAFIELD_TRIVIAL(x, x, float);
SOAFIELD_TRIVIAL(y, y, float);
SOAFIELD_TRIVIAL(z, z, float);
SOASKIN(Skin, x, y, z) {
SOASKIN_INHERIT_DEFAULT_METHODS(Skin);
float r () noexcept
{
return std::sqrt(this->x() * this->x() + this->y () * this->y() +
this->z () * this—>z());

3

}

SOAContainer<std::vector, MyPoint::Skin> ¢ = /* from somewhere */
xyview = c.view<MyPoint ::x, MyPoint::y>();
muloxz = xyview[0].x() * xyview.y(Q;

m operation is cheap: copy 2 iterators per field

m by default, view gets trivial skin, i.e. sum-of-fields
M. Schiller (Glasgow) SOAContainer July 18th, 2018 15 /28 W"]

views and zips

views (2/2)

m by default, view gets trivial skin, i.e. sum-of-fields
m if you want things to be more clever, you can specify your own skin

namespace MyPoint {
SOAFIELD_TRIVIAL(x, x, float);
SOAFIELD_TRIVIAL(y, y, float);
// see last slide for details
}
namespace MyPoint2D {
SOASKIN(Skin, MyPoint::x, MyPoint::y) {
SOASKIN_INHERIT_DEFAULT_METHODS (Skin);
float r() noexcept
{ return std::sqrt(this->x() * this->x() + this->y () * this->y(); }
b
}
SO0AContainer<std::vector, MyPoint::Skin> ¢ = /* from somewhere */
fancyxyview = c.view<MyPoint2D ::Skin>(Q);
elOr = fancyxyview[0].rQ;

M. Schiller (Glasgow) SOAContainer July 18th, 2018 16 / 28 %

views and zips

vectorised straight line (1/2)
m consider trivial example: straight line from points

namespace HitPair { // pair of hits in two layers
SOAFIELD_TRIVIAL(xhit0, xhit®, float);
SOAFIELD_TRIVIAL(zhit®, xhit®, float);
SOAFIELD_TRIVIAL(xhit1, xhit1, float);
SOAFIELD_TRIVIAL(zhit1, zhit1, float);
SOASKIN_TRIVIAL(Skin, xhit0, zhit0, xhit1, zhit1);
}
namespace XZLine { // straight line
SOAFIELD_TRIVIAL(x0, x0, float);
SOAFIELD_TRIVIAL(z0, z0, float);
SOAFIELD_TRIVIAL(tx, tx, float);
SOASKIN(Skin, x0, z0, tx) {
SOASKIN_INHERIT_DEFAULT_METHODS(Skin);
Skin(float xhit0, float zhit®, float xhit1, float zhit1) noexcept :
Skin(0.5f * (xhit0 + xhit1), 0.5f * (zhit0 + zhit1),
(xhit1 - xhit@) / (zhit1 - zhit0))
{3
float x(float z) noexcept
{ return (z - this->z0()) * this->tx() + this->x0(Q; }
b8
}
SOA::Container<std::vector, HitPairs::Skin> hitpairs = /* from somewhere */;
SOA::Container<std::vector, XZLine::Skin> xzlines;
xzlines.reserve(hitpairs.size ());
for (el: hitpairs)
xzlines.emplace_back(el.xhit0 (), el.zhit0 (), el.xhit1(), el.zhit1());
M. Schiller (Glasgow) SOAContainer July 18th, 2018

17 /28

views and zips

m in many cases, you have input vectors of (SOA) objects

m incremental calculation of the output
// ... see last slide for field and skin definitions ...
SOA ::Container<std::vector, HitPairs::Skin> hitpairs = /* from somewhere */;
SO0A ::Container<std::vector, XZLine ::Skin> xzlines;
xzlines.reserve(hitpairs.size ());
for (el: hitpairs)
xzlines.emplace_back(el.xhit0 (), el.zhit0 (), el.xhit1(), el.zhit1());

m ideally, want convenient (skinned) interface of both inputs and

outputs together (“object composition”):

// zip together hit pairs with the resulting calculated line
xzstubs = zip(hitpairs, xzlines);
fs = xzstubs.front () // first stub

std:scout << "firstostub:o(" << fs.xhit0 () << "," << fs.zhit0 () << ")-(" <<
fs.xhit1() << "," << fs.zhit1() << ").=>.20=" << fs.z20() << "_x0=" <<
fs.x0() << "_tx=" << fs.tx() << std::endl;

M. Schiller (Glasgow) SOAContainer July 18th, 2018 18 /28

views and zips view and zip summary

view and zip summary

m zip returns a skinned view of the underlying range
m cheap operation: copies a pair of iterators per field
m can take any number of inputs
m all must be same length (or asserts)
m no duplicate field types!
m view and zip allow for flexible vectorised compute kernels
m compute new quantities based on the input
m return a uniform view of result and (some of) input variables

m precisely what is needed in many pattern reco algorithms

m new views get the trivial skin composed of the included fields
m if you need something else, you can pass your own skin
m views of subranges work, too:

SO0A ::Container<std::vector, HitPairs::Skin> ¢ = /* ... */;
// first eight hit0s:
first8hit0 = c.view<HitPairs:xhit0, HitPairs::xhit1>(c.begin(), c.begin() + 8);

M. Schiller (Glasgow) SOAContainer July 18th, 2018 19 /28 W"]

SOAContainer pointers

use cases in LHCb

m had hoped SOAContainer would have seen some adoption by now

m a lot of colleagues tell me how important and useful it is...

®m ... but when in doubt:

m they work on something else,
m or prefer to roll their own
m nevertheless, there are a couple of prototypes out there:

m variant of Pixel tracking: aim to use SOAContainer to compare AOS
and SOA; Renato Quagliani will add typedefs to make SOA variant as
soon as he has time: AOSPixelTracking.cpp, AOSPixelTracking.h

m I have my own standalone pixel tracking SOA prototype (with ideas
from Rainer Schwemmer and Daniel Campora - I still a fair bit of
development to do): velo-phi-drdz2

m I won’t show algorithm code here, since it looks just like AOS code!

M. Schiller (Glasgow) SOAContainer July 18th, 2018 20/ 28 %

https://gitlab.cern.ch/lhcb/Rec/blob/TDR-AOSPixelTracking/Pr/PrPixel/src/AOSPixelTracking.cpp
https://gitlab.cern.ch/lhcb/Rec/blob/TDR-AOSPixelTracking/Pr/PrPixel/src/AOSPixelTracking.h
https://gitlab.cern.ch/mschille/velo-phi-drdz2

SOAContainer pointers

SOAContainer for upgrade event model

m people like SOAContainer’s ability to zip for upgrade event model
m together with boost::join, it's a powerful mix to

m aggregate information from different kinds computations in a single
object
m aggregate information from different origins in a shared collection

PID p ... mother key x y z

PR informationfit informationPID information MCpart::_cleOO@l
(e.g. hits) (e.g. momentum) MCparticle0002

o . . "
F o
[ty (a5 in pythen) MCparticle9999
concatenste
HLT2 tracks| e PO,
s 50 gythom) (a5 41 python)

]
S
o
A
S
T
[
-
]
=
1]
o

M. Schiller (Glasgow) SOAContainer July 18th, 2018 21 /28 %

SOAContainer pointers

SOAContainer pointers

m there’s finally a tutorial on the web

m some example code also on gitlab

m nice example: gravitational N-body simulation (think galaxy
formation)

m compute-heavy code

m can switch between SOA and AOS with a typedef!

m clang 5.0 autovectorises: full factor 4 speedup one can expect from
my CPU!

M. Schiller (Glasgow) SOAContainer July 18th, 2018 22 /28 ﬂ’ﬂﬁ

https://gitlab.cern.ch/LHCbOpt/SOAContainer/blob/master/tutorial/tutorial.md
https://gitlab.cern.ch/LHCbOpt/SOAContainer

summary

M. Schiller (Glasgow) SOAContainer July 18th, 2018 23 /28 %

m SOAContainer framework is there, and ready for you to play with!
m convenient SOA prototyping
m almost “feels” like normal vector of structs
m new objects can be composed on the fly (“zipping”)
— easy, structured and efficient compute kernels

m get the code, and start hacking today!

m I'm happy to answer questions
m in any case, I'd like to hear from you how it goes:
Manuel.Schiller@cern.ch

interested in other cool stuff? kdtree, MMapVector, see backup!

M. Schiller (Glasgow) SOAContainer July 18th, 2018 24 /28 %

https://gitlab.cern.ch/LHCbOpt/SOAContainer
mailto:Manuel.Schiller@cern.ch
https://gitlab.cern.ch/mschille/kdtree
https://gitlab.cern.ch/mschille/MMapVector

backup

M. Schiller (Glasgow) SOAContainer July 18th, 2018 25 /28 %

MMapVector

MMapVector

m mmap makes OS map contents of a file/device into memory

m swapping is implemented that way, OS loads executables with mmap
m very good I/0 performance (raw disk speeds, OS very well tuned!)

m MMapVector has familiar std::vector-like interface:

m can be used for HUGE (larger than RAM) vectors - fast, invisible I/0O

class Candidate { /* ... */ };

MMapVector<Candidate> hugevector; // backed by a temp. file

hugevector.reserve (10000000000ull);

for (uint64_t i = 0; i < 10000000000ull; ++i)
hugevector.push_back(generate ());

// do sth with it...

for (& c: hugevector) doSth(c);

m 7w calibration in LHCb (runs online) uses it since last year
m iterative calibration: read same data over and over
m then you may not want the overhead of ROOT’s I/0

m > factor 5 faster: MMapVector plus better work distribution among
HLT nodes

M. Schiller (Glasgow) SOAContainer July 18th, 2018 26 /28 W"]

https://gitlab.cern.ch/mschille/MMapVector

MMapVector

MMapVector example: 1° calibration

m expensive part: I/0 to calibrate each CALO cell in 1% - yy

<cmath>
<cassert>
"MMapVector.h"
"TH1D.h"
int main () {
struct Candidate {
double px1, pyl, pz1, E1, px2, py2, pz2, E2;
unsigned celll, cell?;
35
double* calibs = getCellCalibs ();
unsigned mycellid = worker_get_my_cellid ()
MMapVector mmaptuple<Candidate>("/tmp/mytuple.mmap"”, MMapVectorBase ::ReadOnly);
TH1D hpimass("hpimass", "pimass", 1000, 1e2, 2e2);
for (& c: mmaptuple) { // expensive
assert(mycellid == c.celll || mycellid == c.cell2);

E = calibs[c.cell1] * c.E1 + calibs[c.cell2] * c.E2;

px = calibs[c.cell1] * c.px1 + calibs[c.cell2] * c.px2;
py = calibs[c.cell1]l * c.pyl + calibs[c.cell2] * c.py2;
pz = calibs[c.cell1] * c.pz1 + calibs[c.cell2] * c.pz2;

m2 = E*E - px * px - py * py - pz * pz;
hpimass.Fill(std::sqrt(m2));

}
fit_and_update_calib(mycellid, hpimass); // cheap
return 0;

M. Schiller (Glasgow) SOAContainer July 18th, 2018 27 /28 %

MMapVector

MMapVector example: convert ROOT tuple

m converting from a ROOT-style tuple is also straightforward:

<cstdint>
"TFile.h"
"TTree.h"
"MMapVector.h"
int main ()
{
TFile f("mytuple.root", "READ");
TTreex t = (TTree*) f.Get("decaytree");
struct Candidate {
double px, py, pz, E;

} ¢

t->SetBranchAddress("px", &c.px);

t->SetBranchAddress("py", &c.py);

t->SetBranchAddress("pz", &c.pz);

t->SetBranchAddress("E", &c.E);

MMapVector<Candidate> mmaptuple("/tmp/mytuple.mmap",
MMapVectorBase ::ReadWriteCreate);

uint64_t ncands = t->GetNumEntries ();

mmaptuple.reserve(ncands);

for (uint64_t i = 0; i < ncands; ++i) {
t->GetEntry(i);
mmaptuple.push_back(c);

return 0;

M. Schiller (Glasgow) SOAContainer July 18th, 2018 28 /28 W"]

	
	outline
	introduction
	SOA basics
	SOA implementation: fields
	SOA implementation: skins
	SOA implementation aims

	SOA examples
	trivial fields and skins
	complex fields
	complex skins

	views and zips
	views
	zips
	view and zip summary

	SOAContainer pointers
	summary
	backup
	MMapVector

