### WP5: HIRADMAT@SPS – STATUS REPORT

### **Outline**

- □ HiRadMat overview/reminder
- Project status
- Next steps

I. Efthymiopoulos – CERN





#### 2 Goals

- □ Facility to study the impact of intense pulsed beams on materials
  - Thermal management (heating)
    - material damage even below melting point
    - material vaporization (extreme conditions), cavitation
  - Radiation damage to materials change of properties
  - Thermal shock beam induced pressure waves
- Important test bed for the design validation of LHC near-beam components before installation in the machine
- Uses an LHC-type beam @450 GeV from 1-288 bunches, 1.1-1.7×10<sup>11</sup> ppb
- Foreseen clients: LHC collimators, protection devices, machine components, material studies (bulk, superconductors), high-power targetry, irradiation tests of electronics
- Transnational Open Access within EUCARD to other teams

# EUCARD

### Examples – beam impact on materials



High-intensity beam on a solid target (Tu)

Courtesy: J. Lettry, CERN





MERIT experiment: High-intensity beam on a liquid Hg-target

LHC collimator:
Displacement analysis
– 500kW load case for
10s
Loss rate 4x10<sup>11</sup> p/s
(Beam Lifetime 12min)

Courtesy: R.Assmann, CERN



High Energy Density Plasma formation, proton "Tunneling Effect"

Courtesy: N.Tahir, GSI

# Making the HiRadMat Facility



4

### The challenges!

 Construct a high-intensity facility designed to test materials at their damage limits

....without destroying the facility itself!!



- Build ~300m of beam line and a HI irradiation facility without access to the areas!!
  - Access to underground areas is possible only during the short (movable) stops of LHC and the short 2010/2011 shutdown



...flexible schedule, able to organize and do work in short notice



Primary beam layout



C. Hessler, 26/01/09













11

### Primary proton/ion beam parameters

| Parameter                                         | Unit            | Value (proton beam)                                                                                            | Value (lead ion beam)                        |
|---------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Beam energy                                       | GeV             | 450                                                                                                            | $36.9 \times 10^3 (177.4 \text{ GeV/n})$     |
| Bunch intensity                                   | particles       | $5 \times 10^9 \text{ to } 1.15(1.75) \times 10^{11}$                                                          | $7 \times 10^7 \text{ to } 3.64 \times 10^9$ |
| Bunch length                                      | cm              | 11.2                                                                                                           | 11.2                                         |
| Number of bunches                                 | -               | 1 – 288                                                                                                        | 1 – 52                                       |
| Bunch spacing                                     | ns              | 25                                                                                                             | ≥ 100                                        |
| Pulse energy                                      | MJ              | 2.4                                                                                                            | $21.5 \times 10^{-3}$                        |
| Pulse length                                      | μs              | 7.2                                                                                                            | 5.2                                          |
| Peak power                                        | GW              | 340                                                                                                            | $2.3 \times 10^{-3}$                         |
| Normalized emittance $(1\sigma)$                  | μm              | 3.5                                                                                                            | 1.4                                          |
| $\sigma_{x} \times \sigma_{y}$ at exp. (baseline) | mm <sup>2</sup> | 1.0                                                                                                            | 1.0                                          |
| $\sigma_{x} \times \sigma_{y}$ at exp. (request)  | mm <sup>2</sup> | 0.25 - 4.0                                                                                                     | 0.25 - 4.0                                   |
| Integrated beam intensity (protons)               |                 | 10 <sup>16</sup> protons/year<br>10 experiments × 10 <sup>15</sup> protons(max)/exp<br>~30÷100 extractions/exp |                                              |

Beam design: C.Hessler, M.Meddahi



12

### Irradiation area layout: TT66 line & TNC tunnel



- □ **~10 m** long. space upstream the T9 target
- □ **[1.5,3.0] m** lateral space
- Possibility for fast installation of experiments
- Cool-down space downstream the TNC tunnel
- If requested, areas for test of electronics or component irradiation can be prepared

# The HiRadMat Project



13

Project structure



### Post-Chamonix 2010 schedule



14

### Master schedule





15

### Project status

- Primary beam
  - Design completed
  - Weekly meetings with equipment groups to monitor projects
  - Integration ongoing; installation schedule available
- WANF dismantling
  - Good progress → (photos)
- Irradiation area
  - Design ongoing : beam dump, test setup
  - Focus on services & infrastructure needed for the tests
  - Safety issues



16

Highlights – Dismantling old WANF beam line





Highlights – Dismantling old TT66 beam line



new beam line!



Highlights – Dismantling old T1 target



Almost impossible → decided to completely remove T1 target

Special shielded forklift with automatic hook to manipulate radioactive blocks → only one person and with x5 less dose !!



19

#### The Irradiation area





- Use base plate equipped with plug-in connectors for cables, cooling, etc. as interface
  - alignment to 0.1mm
  - remote operation with overhead crane minimal human intervention for setup
  - Test equipment in vacuum or air depending on the test
- Beam windows is a critical issue → use same as CNGS



#### 20

### The irradiation area

- Life cycle of a test setup:
  - 1. Prepare 1(2) test setups each on is platform in the lab or assembly area
  - 2. Move them to the irradiation area do the irradiations; swap between the two remotely (either base platform movement or ...)
  - 3. Move them to the cool-down area
  - 4. Recuperate them later for inspection/analysis in the lab



### HiRadMat@SPS TA



21

#### Open access

- Web pages for project and open access available
  - http://cern.ch/hiradmat http://eucard.web.cern.ch/EuCARD/activities/access/



### HiRadMat@SPS TA



#### 22

### Open Access

- □ EUCARD/WP5 provides funds to support user teams to exploit the facility
  - Application review at the User Selection Panel
  - Deadline : September each year for the next SPS run starting Spring the year after
  - Need still to clarify the operation of the facility as it will eventually take beam time from the SPS physics program
- □ So far: 8 beam requests, four more in the pipeline
  - Contractual requirement: 20 users/10 projects
- To optimally exploit the facility, would be excellent to couple the existing support with:
  - online monitoring, instrumentation (cameras, laser vibrometers, temperature measurements etc.)
  - beam-material impact simulation (also relevant for safety issues)
  - post-exposure analysis (lab, metrology, etc.)
  - ...and finally agreement for waste

Possible collaborations or a new EU project with material science colleagues?

# WP5: HiRadMat@SPS



#### 23

### Summary

- The design of the facility is being completed, presently focusing on the irradiation area
- The construction of the facility is advancing as access allow. The excellent collaboration and support from all teams is our way out to the very tight and uncertain schedule
- Our target to have the installation of the facility completed for Summer'11 remains; and we look forward to welcome the first users later in the year after commissioning is completed

### Thank you!