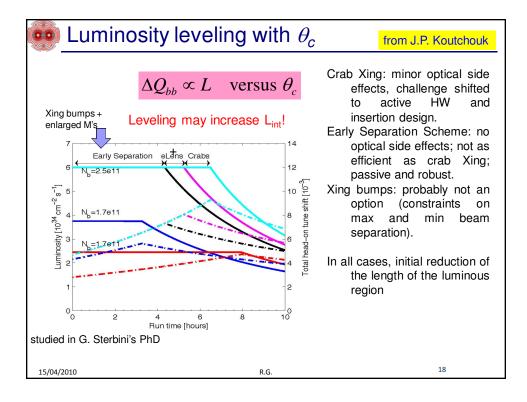
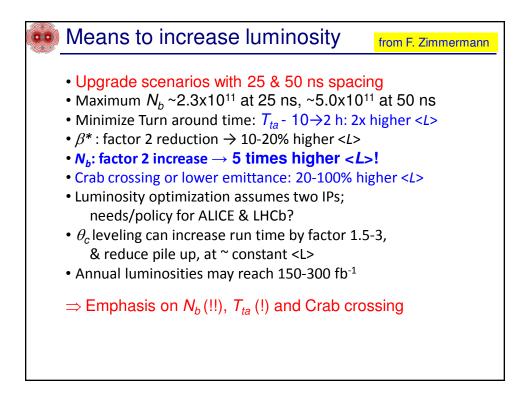
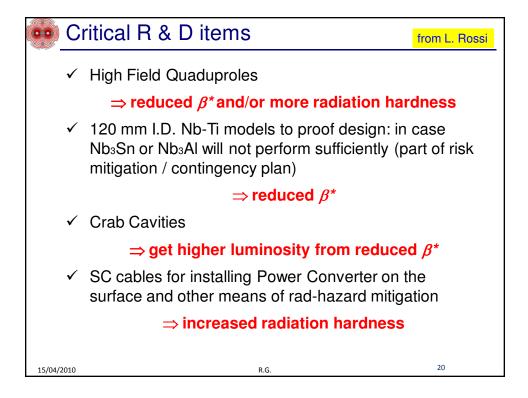
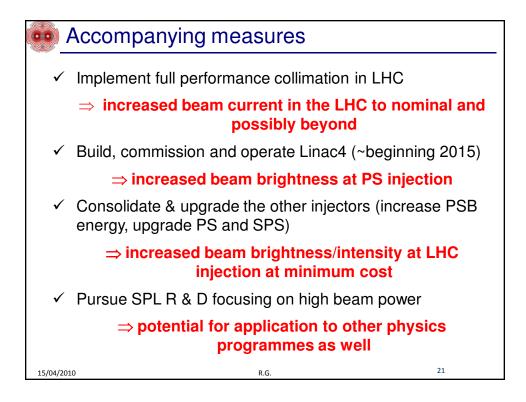
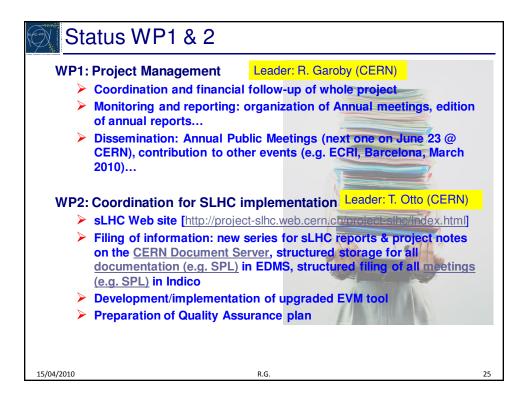

Step	E [TeV]	Fill scheme	N	β* [m] IP1 / 2 / 5 / 8	Run time (indicative)
1	0.45	2x2	5x10 ¹⁰	11 / 10 / 11 / 10	(marcative)
2	3.5	2x2	2 - 5x1010	11/10/11/10	Weeks
3	3.5	2x2*	2 - 5x1010	2/10/2/2	
4	3.5	43x43	5x10 ¹⁰	2/10/2/2	Weeks/Mon
5	3.5	156x156	5x10 ¹⁰	2/10/2/2	weeks/mon
6	3.5	156x156	9x10 ¹⁰	2/10/2/2	
7	3.5	50 ns - 144**	7x10 ¹⁰	2.5 / 3 / 2.5 / 3	Months
8 9	3.5	50 ns - 288	7x10 ¹⁰	2.5 / 3 / 2.5 / 3	
9	3.5	50 ns - 720	7x10 ¹⁰	2.5 / 3 / 2.5 / 3	Months
* -		rossing angle	+ 1D1		

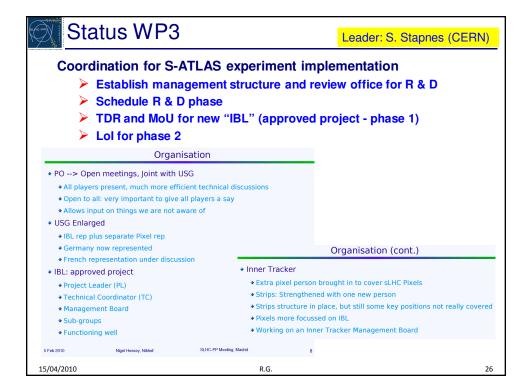

Near f	uture:	2011			fre	om M. Lamont
3.5 TeV: run flat out at up to ~100 pb ⁻¹ per month						
	No. bunches	ppb	Total Intensity	β*	Peak Lumi	Integrated Lumi [pb ⁻¹]
50 ns	432	7 e10	3 e13	2	1.3 e32	~85
Pushing intensity limit	720	7 e10	5.1 e13	2	2.2 e32	~140
Pushing bunch current limit	432	11 e10	4.8 e13	2	3.3 e32	~209
Either way should be able to deliver around 1 fb ⁻¹						
15/04/2010			R.G.			13

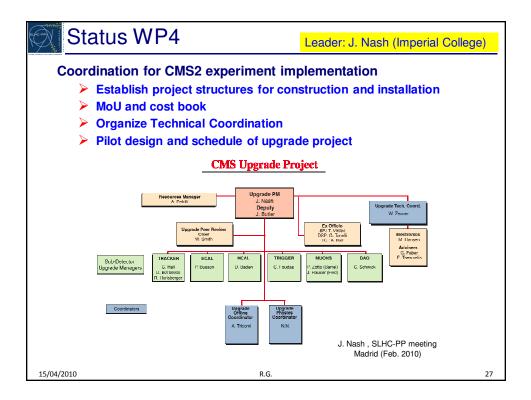

	• N	Medium term: until 2015 from M. Lamont								Lamont
 Two years at 3.5 TeV 2010: should peak at 10³² and yield up to 0.5 fb⁻¹ 2011: ~1 fb⁻¹ at 3.5 TeV 2012: splice consolidation (and cryo collimator prep.) 2013: 6.5 TeV - 25% nominal intensity 2014: 7 TeV - 50% nominal intensity 										
	Year	Months	Energy	β*	I _b	N _b	Peak Iuminosity	Lumi / month	Int Iumi / Year	Int. Iumi cumul.
	2010	8	3.5	2.5	7 10 ¹⁰	720	1.2 10 ³²	-	0.2	0.2
	2011	8	3.5	2.5	7 10 ¹⁰	720	1.2 10 ³²	0.1	0.8	1.0
	2012									
	2013	6	6.5	1	1.1 10 ¹¹	720	1.4 10 ³³	1.1	7	8
	2014	7	7	1	1.1 10 ¹¹	1404	3.0 10 ³³	2.3	16	24
15	/04/2010					R.G.			14	

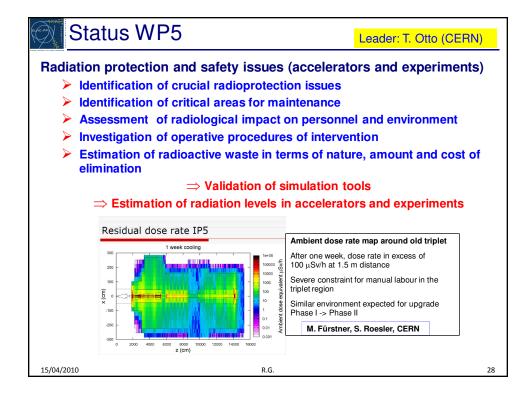


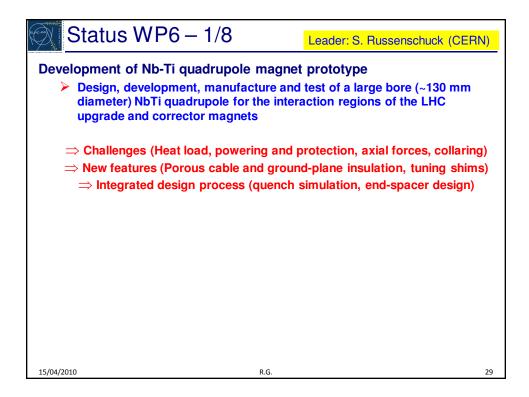


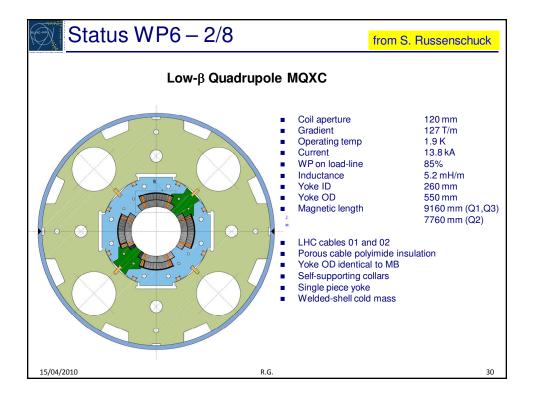


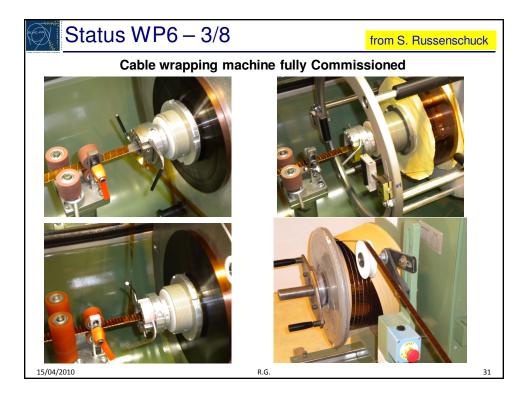


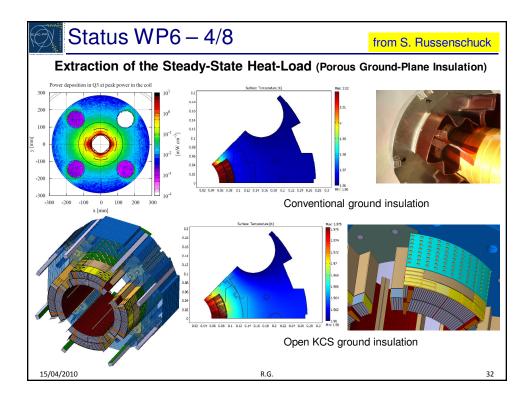


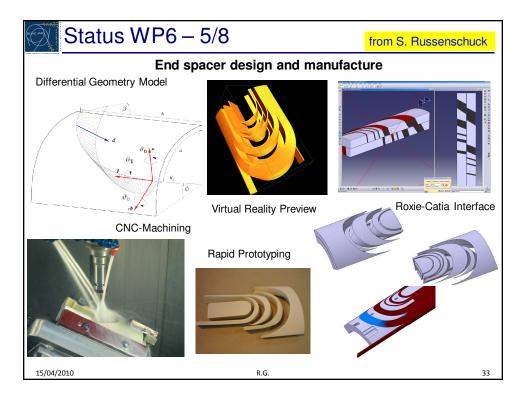

#	Participant	Max Total EC	Prefinancing Received	Payment 1	Total received	% received		To be paid to reach the
		contribution	(2008)	(2009)	to date	funds	Ceiling	ceiling
1	CERN	3,062,484.0	1,633,324.80	1,122,910.80	2,756,235.60	90%	2,756,235.60	
2	AGH-UST	104,000.0	55,466.67	30,152.86	85,619.53	82%	93,600.00	7,980.47
3	CEA-Saclay	465,460.0	248,245.33	170,668.67	418,914.00	90%	418,914.00	
4	CIEMAT	152,645.0	81,410.67	37,983.98	119,394.65	78%	137,380.50	17,985.85
5	CNRS-IN2P3	105,600.0	56,320.00	993.72	57,313.72	54%	95,040.00	37,726.28
6	СТU	44,940.0	23,968.00	16,478.00	40,446.00	90%	40,446.00	-
7	DESY	99,691.0	53,168.53	1,408.45	54,576.98	55%	89,721.90	35,144.92
8	ETH Zürich	89,131.0	47,536.53	32,681.37	80,217.90	90%	80,217.90	-
9	FOM-NIKHEF	64,200.0	34,240.00	23,540.00	57,780.00	90%	57,780.00	-
	GSI	72,225.0	38,520.00	11,593.03	50,113.03	69%	65,002.50	14,889.47
11	Imperial	89,131.0	47,536.53	30,770.97	78,307.50	88%	80,217.90	1,910.40
	INFN	40,000.0	21,333.33	14,666.67	36,000.00	90%	36,000.00	-
	PSI	108,225.0	57,720.00	30,747.45	88,467.45	82%	97,402.50	8,935.05
	STFC	489,850.0	261,253.33	76,351.76	337,605.09	69%	440,865.00	103,259.91
15	UBONN	120,000.0	64,000.00	44,000.00	108,000.00	90%	108,000.00	-
	UNIGE	35,310.0	18,832.00	12,947.00	31,779.00	90%	31,779.00	
	USFD	32,100.0	17,120.00	11,770.00	28,890.00	90%	28,890.00	-
18	RWTH Aachen	25,000.0	13,333.33	9,166.67	22,500.00	90%	22,500.00	
		5,199,992.0	2,773,329.05	1,678,831.40	4,452,160.45	86%	4,679,992.80	227,832.35
			86% E	C funds a	Iready	C.e	ilina: FC	retains
86% EC funds already Ceiling: EC retains received and distributed 10% till end of the project					l of the			

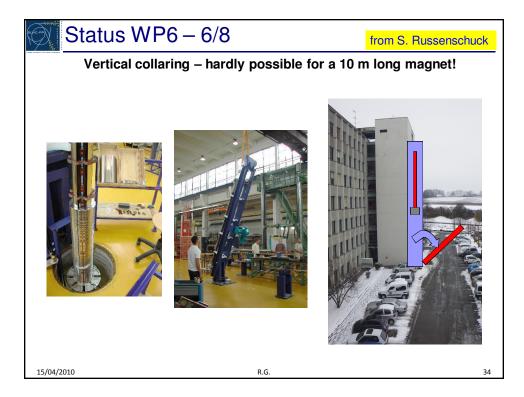

	Description The activities are divided into 8 work packages, including one to co- ordinate the activities of the remaining 7.						
	Work package nb.	Type of activity	Description				
	W P 1	Management	SLHC-PP Project Management				
	W P 2	Coordination	Coordination for the SLHC accelerator implementation				
	W P 3	Coordination	Coordination for the S-ATLAS experiment implementation				
	W P 4	Coordination	Coordination for the CMS2 experiment implementation				
	W P 5	Support	Radiation protection and safety issues for accelerator and experiments				
	W P 6	RTD	Development of Nb-Ti quadrupole magnet prototype				
	WP7	RTD	Development of critical components for the injectors				
	W P 8	RTD	Tracking detector power distribution				
15/0	4/2010		R.G.	24			

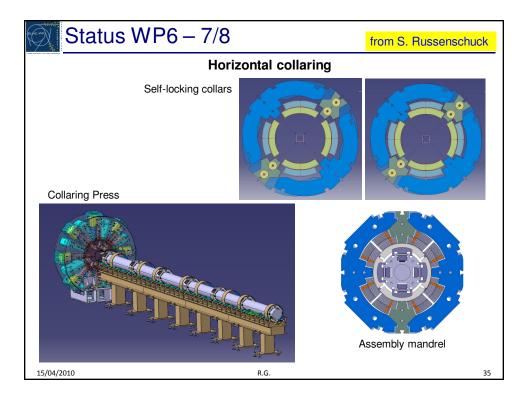


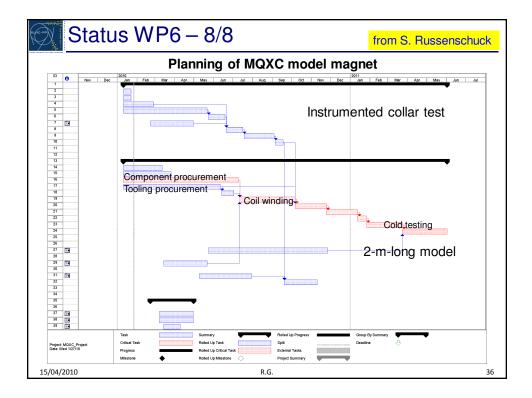


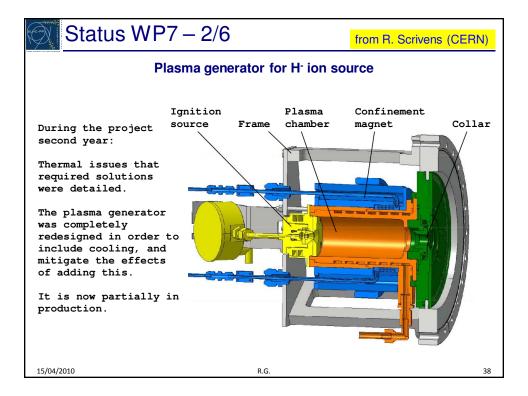


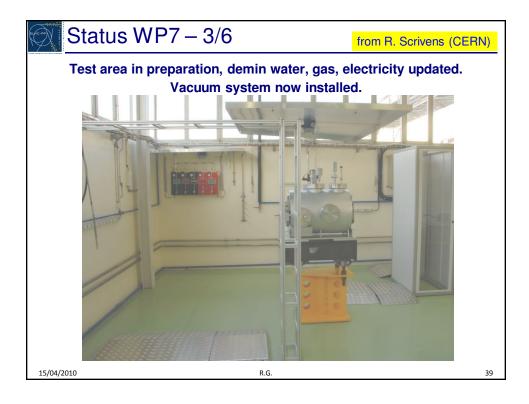


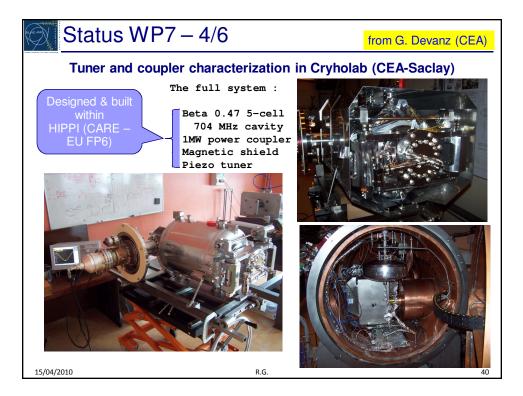


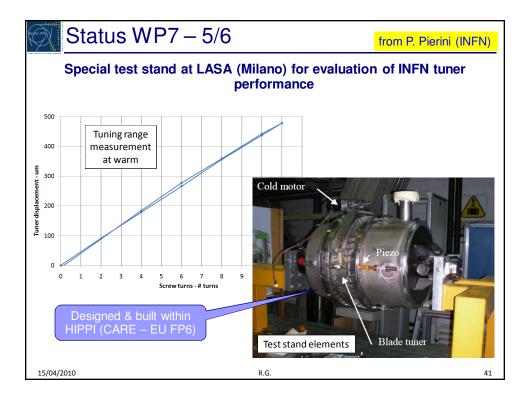


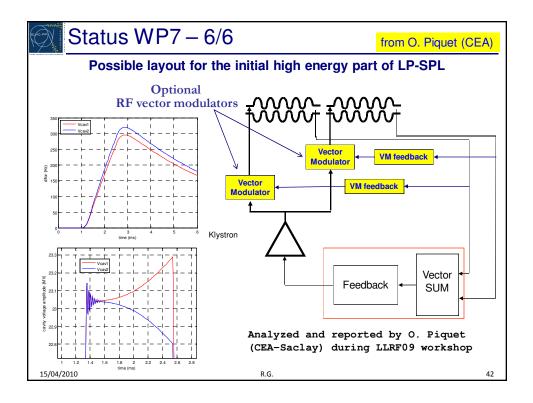


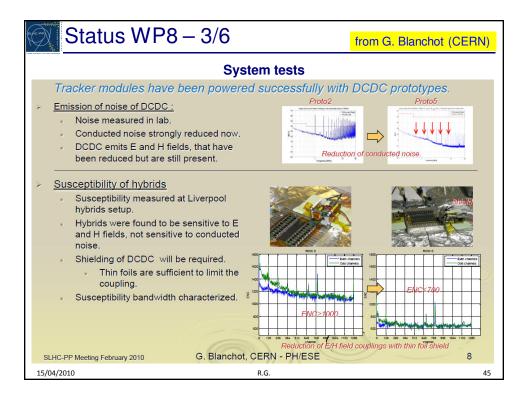


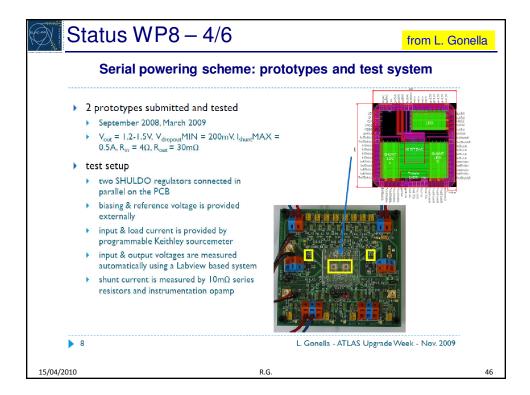


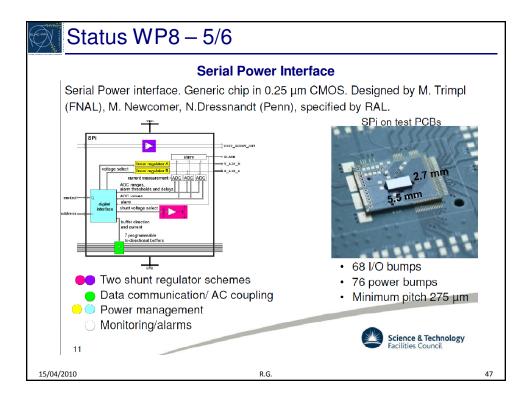


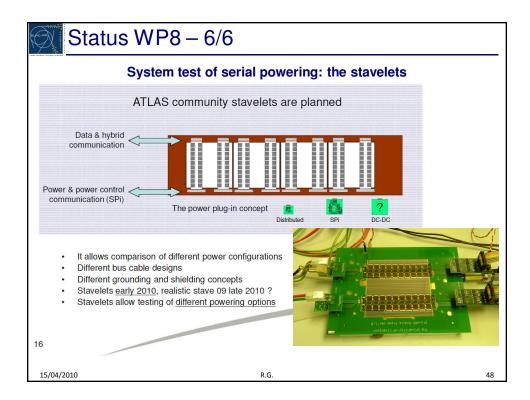


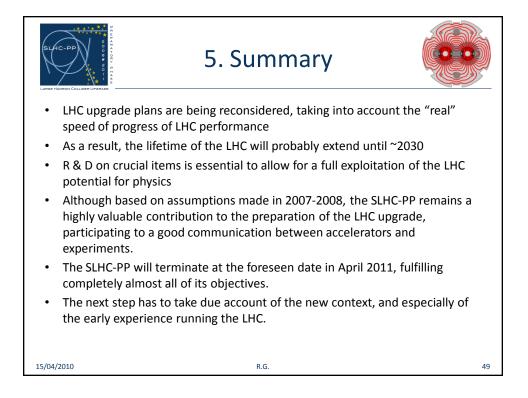









Leader: W. Dabrowski (AGH-UST)
on options as well as serial powering
for integration into dedicated ASICs
LAS and CMS2 detector module
j. 43


	Sta	tus WP8	n G. Blanchot (CER	N)				
DC-DC conversion ASIC prototypes								
	Prototype	AMIS1	AMIS2	IHP1	3 ASIC Prototypes			
	ASIC				were produced: <u>AMIS Technology</u> : • First sample			
	Techno	AMIS 0.35	AMIS 0.35	IHP 0.25	with core			
	Package	QFN48	QFN48 QFN32	QFN48 QFN32	DC/DC functions.			
	РСВ				 Second sample, now fully functionnal. 			
	Vin	3.3V to 15V	3.3V-12V	2.5V to 12V				
	Vout	Programmable	Presets at 1.2/1.8/2.5/3/5V		IHP technology:			
	lout	2A	3A	3A	• Fully			
	Fsw	1 MHz	1 MHz	2.0 MHz	functional			
	Efficiency Gate Delay	< 80% Fixed	82% Programmable	87% Adaptative	DCDC.			
	Comment	Fixed First Prototype. Required an external sawtooth generator and regulators.	Programmable Second Prototype. Programmable gate delay Improves efficiency. Sawtooth generator integrated, still requires external regulator.	Adaptative Third Prototype. Adaptative gate delay furthe improves efficiency.	Regulators for control circuitry are still external, they will be integrated in the next			
	SLHC-PP M	eeting February 2010	G. Blanchot, CE	RN - PH/ESE	IHP sample (in production)			
15/04/	2010		R.G.			44		



