

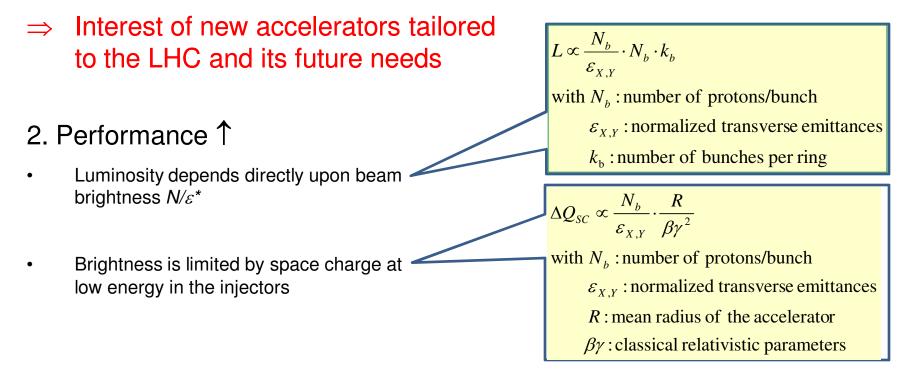
Plans for proton accelerators at CERN

R. Garoby - 13/04/2010

- Scenario 1: new LHC injectors
- Scenario 2:
 - Linac4
 - Consolidation & upgrade of the other injectors
 - R & D for high power SPL
- Comments

Scenario 1*: New LHC injectors

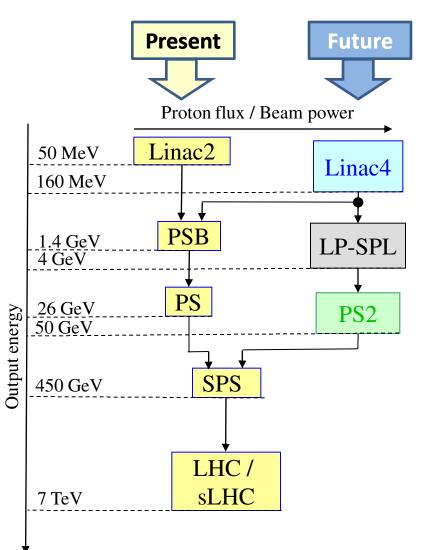
* Detailed during Workshop on "European Strategy for Future Neutrino Physics" CERN, 1-3 October 2009



Motivation

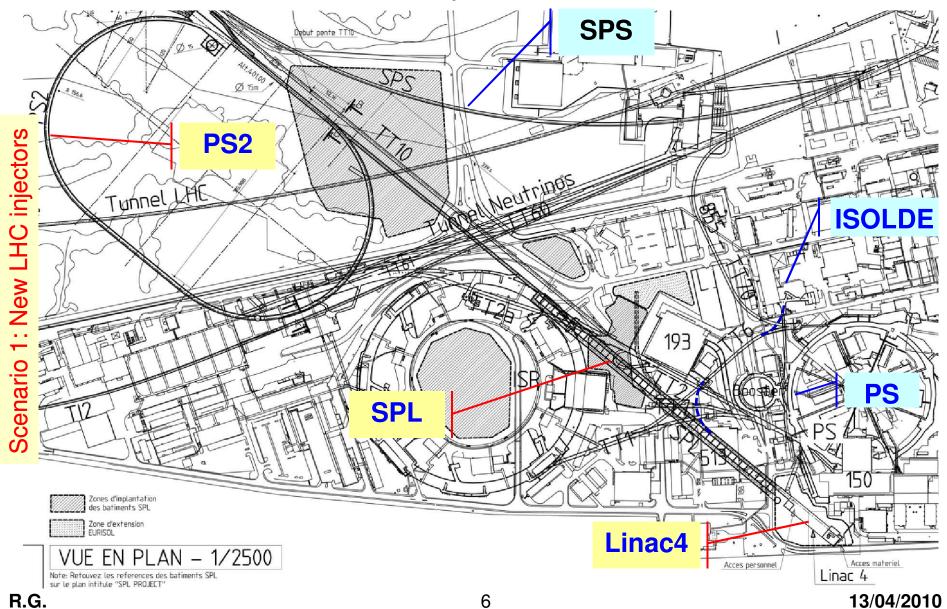
1. Reliability ↑

The present accelerators are getting old (PS is 50 years old...) and they operate far beyond their initial design parameters


 \Rightarrow Need to increase the injection energy in the synchrotrons

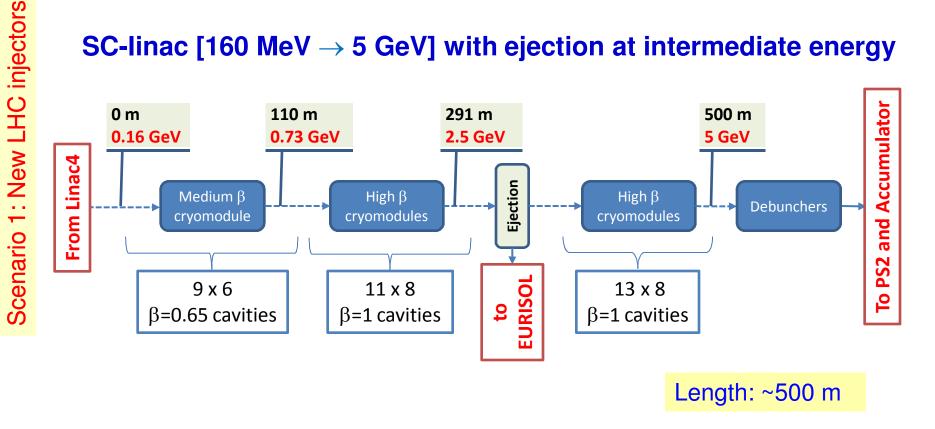
Scenario 1: New LHC injectors

Description



LP-SPL:		
Low Power-Superconducting		
Proton Linac (4 GeV)		
PS2:		
High Energy PS (~ 5 to 50 GeV		
– 0.3 Hz)		
sLHC:		
"Super-luminosity" LHC (up to		
$10^{35} \mathrm{cm}^{-2}\mathrm{s}^{-1}$		

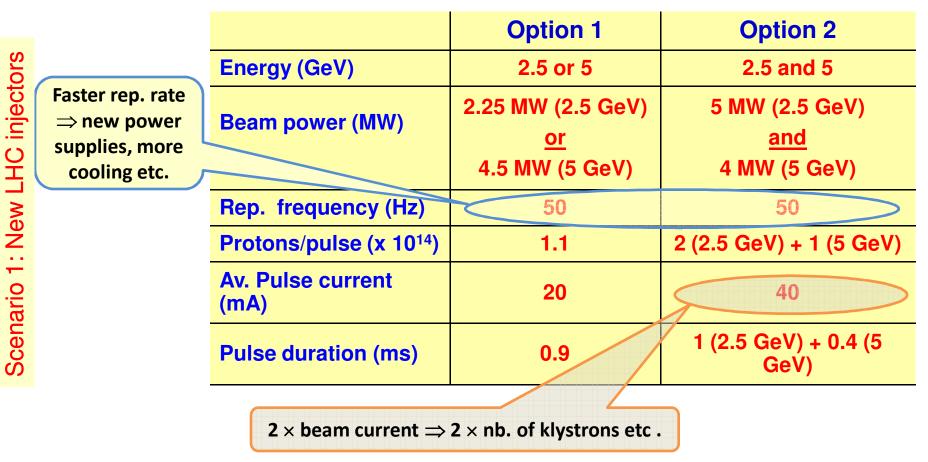
Site layout



Potential SPL upgrade to High Power (1/2)

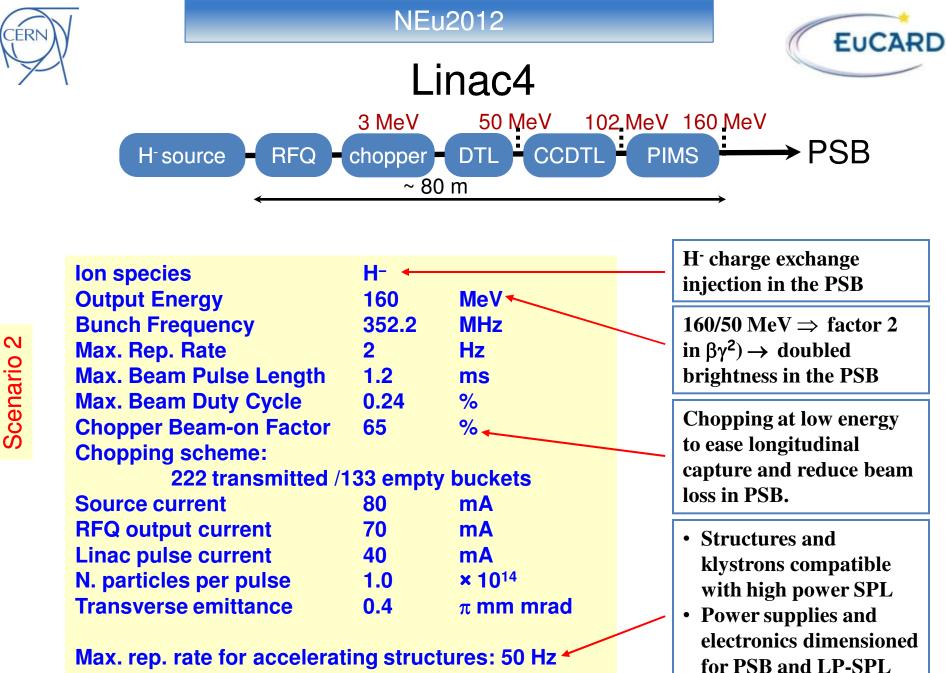
- Upgrade of infrastructure (cooling water, electricity, cryogenics etc.)
- Replacement of klystron power supplies,
- Addition of 5 high β cryomodules to accelerate up to 5 GeV

SC-linac [160 MeV \rightarrow 5 GeV] with ejection at intermediate energy

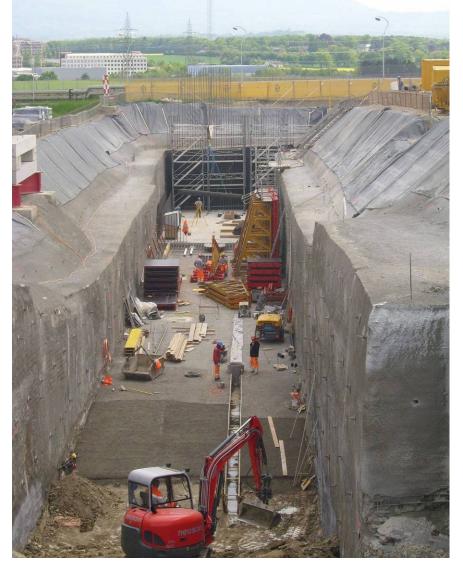


Potential SPL upgrade to High Power

Beam characteristics of the main options



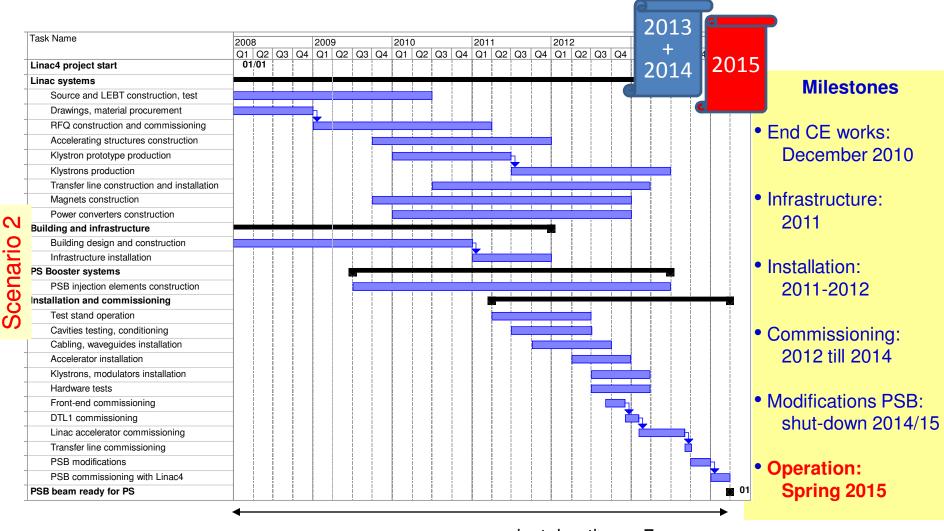
Scenario 2*: Linac4 + consolidation & upgrade of existing injectors + SPL R & D


* From Chamonix 2010 "LHC Performance Workshop" Chamonix, 25-29 January 2010 EUCARD

Linac4 construction site – May 2009

from M. Vretenar

Linac4 tunnel ("cut and cover" excavation) seen from highenergy side.


Final concrete works starting at low-energy side, excavation proceeding at high energy side.

Tunnel level -12 m, length 100 m.

Delivery of tunnel and surface equipment building end of 2010.

EUCARD

LINAC4 planning

project duration: ~ 7 years

Consolidation & upgrade of the other injectors (1/2)

Motivation

- Consolidation is mandatory for reliable operation until ~2020 (earliest date of availability of new injectors)
- Cost of consolidation + new injectors is excessive
- Upgrades can be implemented while consolidating...

Description

Upgrade, replace or add equipment to:

- increase the maximum energy of the PSB up to ~ 2 GeV
- transfer and inject at 2 GeV in the PS
- make the PS and SPS capable to accelerate and manipulate beam with much higher brightness and longitudinal density...

No need for LP-SPL nor PS2

Consolidation & upgrade of the other injectors

Preparation & implementation procedures

- Task forces on "PSB upgrade" and "SPS upgrade" reporting on April 14 to the CERN management (L.M.C. meeting)
- Integration in the "Medium Term Plan" (2011-2015) to be submitted to the SPC (May) and the CERN Council (June)
- Tentative planning: completion as soon as possible => before 2016 (beginning of second LHC operation period at nominal energy)

R & D for a high power SPL

Motivation

- Preserve potential for some alternative physics programmes (Neutrinos, RIB)
- Preserve possibility of new injectors at long term (e.g. DLHC option...)
- Update CERN competences in superconducting RF
- Synergy with other applications outside of CERN

Description

- Focused on high beam power
- R & D only (no work on integration / civil engineering / environmental impact)

R & D for a high power SPL

Proposed subjects until 2015 (in continuity with the work done for the LP-SPL)

- R & D towards a high duty cycle H⁻ source
- Study of the optimum high power RF architecture for a high power SPL
- Design, construction and test of superconducting RF cavities (704 MHz 5 cells β =1)
- Development of high power RF coupler, HOM damper and adaptation of tuner
- Upgrade of the SM18 test place [2 K cooling + pulsed RF source at 704 MHz (1 MW @ 50 Hz)]
- Pulsed high power RF tests of contiguous cavities in a single cryostat
- Design, construction and test a high power klystron modulator
- Design, construction and test of a prototype cryomodule equipped with 8 β =1 cavities

R & D for a high power SPL

Preparation & implementation procedures

- Presentation of proposal on April 14 to the CERN management (L.M.C. meeting)
- Integration in the "Medium Term Plan" (2011-2015) to be submitted to the SPC (May) and the CERN Council (June)
- Tentative planning:
 - First half of 2013: high power test of 4 sc cavities in a cryostat
 - 2015: high power test of 8 sc cavities in a prototype full size cryomodule
 - >2015 Reminder: preparing a project proposal require work (> 2 years) on integration, safety, civil engineering design and the realization of an impact study

In-phase with ESS design update

Comments

Impact on neutrino physics at CERN

	Scenario 1	Scenario 2
PS v experiment	~ ОК	? To be studied
Conventional ν beam from SPS	Potential for ~3 x the CNGS flux	Potential for ~1.5 x the CNGS flux
Conventional v beam from PS2	OK up to 400 kW of beam power	
Conventional ν super beam from SPL	Needs upgrade of LP-SPL + accumulator + target	Needs construction of SPL + accumulator + target
β beam	OK for production of ⁶ He Needs another driver for ¹⁸ Ne	Needs construction of driver(s) for production of ⁶ He and ¹⁸ Ne
v factory	Needs upgrade of LP-SPL + accumulator / compressor + target + muon accelerator complex	Needs construction of proton driver (e.g. SPL-based) + target + muon accelerator complex

Comments

Decision process - Status -

- Scenario 1 was favored until the end of 2009
- Scenario 2 arose during the Chamonix 2010 workshop, associated with an indepth analysis of the short & medium term needs of LHC, and a major revision of the planning of increase of its performance
- Decision between scenarios is part of the overall scientific strategy of CERN
 presently under study
- A proposal will be submitted to the SPC (May 3) and to the CERN Council (June 17-18) for implementation within the MTP and LTP

THANK YOU FOR YOUR ATTENTION!