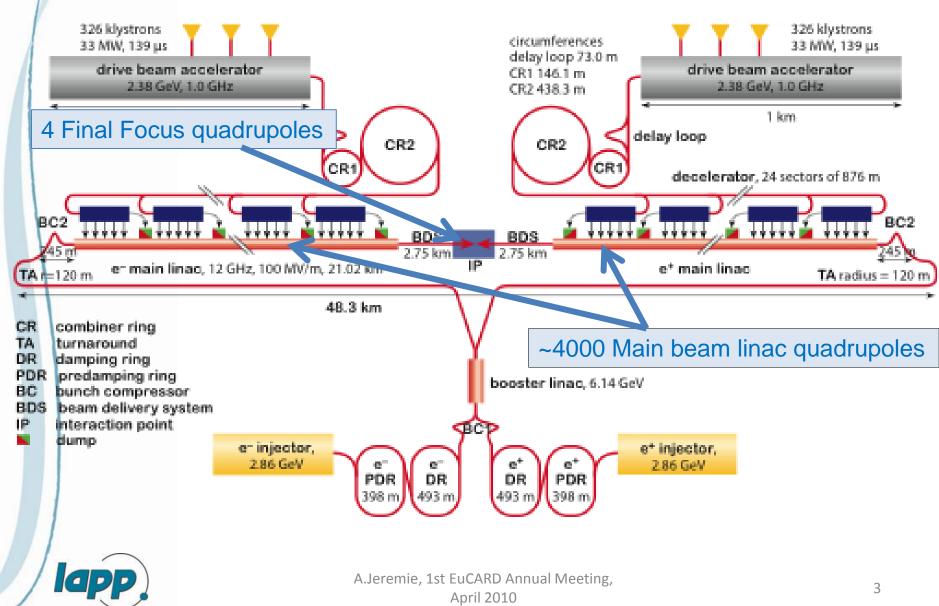


EuCARD NCLinac 9.3 Linac and FF Stabilisation Highlight talk: Stabilization to 1nm

A.Jeremie

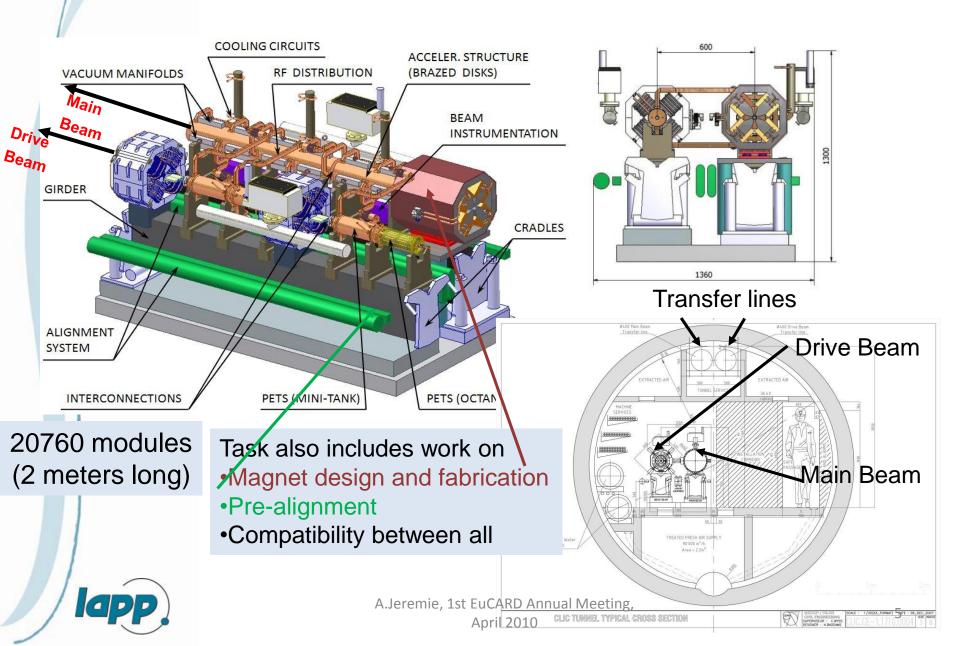
Main objective of task 9.3

• Address quadrupole stabilisation issues on CLIC


Object of highlight talk

- Main linac quadrupole stabilisation
 - Design, build and test for stabilisation a CLIC quadrupole module in an accelerator environment where a stability of 1 nm above one Hz is required.
- Final Focus quadrupole stabilisation
 - Design, build and test for stabilisation a Final Focus test stand where a stability of 0.1 nm above a few Hz is required.

CLIC layout



CLIC feasibility issues

J.P.Delahaye CLIC'08

		SYSTEMS (level n)	Critical parameters	Feasibility issue	Performance issue	Cost issue	
	Structures	Main beam acceleration structures Demonstrate nominal CLIC structures with damping features at the design gradient, with design pulse length and breakdown rate .	100 MV/m 240 ns 3·10-7 BR/(pulse*m)	х	x	x	
		Decelerator structures Demonstrate nominal PETS with damping features at design power, with design pulse length, breakdown rate on/off capability	136 MW 240 ns	x		x	
	Drive Beam	<u>Validation of drive Beam</u> - production - phase stability , potential feedbacks - MPS appropriate for beam power	0.2 degrees phase stability at 12 GHz	x	x		
	Two Beam	Test of a relevant linac sub-unit with both beams	NA	х			
	Beam Physics	- Preservation of low emitrances (main linac + RTML)	Absolute blow-up Hor: 160nradm Vert: 15 mag	x	x		
	Stabilization	Main Linac and BDS Stabilization	Main Linac : 1 nm vert (>1 Hz) BDS: 0.151 nm vert (>4 Hz) depending on implementation of final doublet girder	x	×	x	
	Operation and reliability	Common in stratogy Staging of commissioning and construction MTBF, MTTR Machine protection	Handling of drive beam power of 72 MW	x	x x		

CLIC Two Beam Acceleration Module



Teams involved

slides taken from different presentations within the CLIC stabilisation WG

- Task Coordinator: A.Jeremie
- Oxford University/ JAI (John Adams Institute)
 - D. Urner et al; Interferometry;
 - P.Burrows et al Feedback; simulation
- LAPP/Annecy CNRS
 - A. Jeremie et al; stabilisation, feedback
- CERN
 - C. Hauviller/K.Artoos et al; stabilisation
 - H. Mainaud-Durand et al; pre-alignment
 - M. Modena et al; magnets

- Instrumentation:
 - nm , low frequency (0.5Hz-100Hz), compact, rad hard, insensitive to magnetic field
- Mechanics=> design and dynamic calculations
 - Maximise rigidity, Minimise weight, Minimise beam height, Optimise support positions
- Stabilization strategy
 - automatics, active or passive isolation, feedback etc...

Instrumentation

Sensors that can measure nanometres

Absolute velocity/acceleration studied at LAPP:

Type of sensors	Electromagnetic	Electrochemical	Piezoelectric accelerometers		
	geophone	geophone			
Model	GURALP CMG-	SP500-B	ENDEVCO 86	393B12	4507B3
	40T				
Company	Geosig	PMD Scientific	Brüel & Kjaer	PCB	Brüel & Kjaer
	-		-	Piezotronics	-
Sensibility	1600V/m/s	2000V/m/s	10V/g	10V/g	98mV/g
Frequency range	[0.033; 50] Hz	[0.0167;75] Hz	[0.01; 100] Hz	[0.05; 4000] Hz	[0.3;6000] Hz
Measured noise	0.05nm	0.05nm	0.25nm	11.19nm	100nm
(f > 5Hz)			>50Hz: 0.02nm	>300Hz: 4.8pm	

Relative displacement/velocity:

Capacitive gauges :Best resolution **10 pm (PI)**, **0 Hz to several kHz** Linear encoders best resolution 1 nm (Heidenhain)

Vibrometers (Polytec) ~1nm at 15 Hz Interferometers (SIOS, Renishaw, Attocube) <1 nm at 1 Hz

OXFORD MONALISA (laser interferometry)

Optical distance meters Compact Straightness Monitors (target 1 nm at 1 Hz)

ATF2 vibration and vacuum test ⇒Validation ⇒Next: optical test

CERN test

membrane

interferometer

bench:

and

Characterisation of vibration sources

EUCARD

What level of vibrations can be expected on the ground?

Several measurement campaigns: LAPP (LHC, ATF2, SuperB), DESY (LHC, DESY etc...)....

Effort continued by CERN in 2009

1.00E-06 LHC tunnel (DCUM584) 1.00E-07 ntegrated RMS Displacement [m] – PSI particle accelerator ----CesrTA particle accelerator 1,00E-08 -CMS experiment – CLEX experiment (Bld. 2013) <u>1.n.m</u> 1.00E-09 ----AEGIS experiment (Bld. 193) -TT1 tunnel (ISR) 1,00E-10 Meachanical Measurement Lab (Bld. 376) ---- Metrology lab (Bld. 72) 1,00E-11 1,00E-12 0.1 100 Frequency [Hz]

Under 3Hz, none of the places measured are in the right tolerances => need active isolation

Modelling of Ground Motion ongoing: A.Seryi + O.Napoly: DAPNIA/CEA 95-04 B.Bolzon et al PAC 2009 C.Colette et al ILC-CLIC LET WS 2009

Actuators

polymers

Selection actuator type: comparative study in literature

First selection parameter: Sub nanometre resolution and precision

This excludes actuator mechanisms with moving parts and friction, we need **solid state mechanics**

	Piezo electric materials	High	 + Well established - Fragile (no tensile or shear forces), depolarisation 				
	Magneto Strictive materials	rigidity	-Rare product, magnetic field, stiffness < piezo, - force density < piezo + No depolarisation, symmetric push-pull				
	Electrostatic plates	No rigidity, ideal for	Risk of break through, best results with µm gaps, small force density, complicated for multi d.o.f. not commercial				
	Electro magnetic (voice coils)	soft supports	Heat generation, influence from stray magnetic fields for nm resolution				
Shape Memory alloys		Slow, very non l	Slow, very non linear and high hysteresis, low rigidity, only traction				
	Electro active	Slow not comp	nercial				

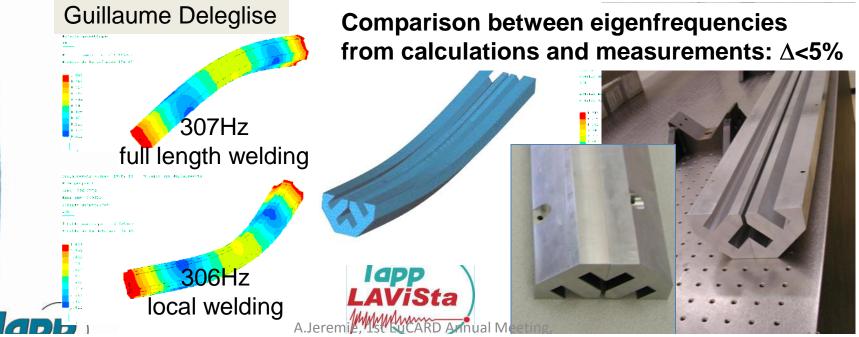
Slow, not commercial A.Jeremie, 1st EuCARD Annual Meeting,

April 2010

Mechanics

A.Jeremie, 1st EuCARD Annual Meeting, April 2010

Dynamic analysis support, alignment and magnet


M. Modena/CERN

Mounting and stiffness Features to decrease vibrations from water cooling

Dynamic analysis LAPP

Type 1 + 4 quads

Prototype (aluminium) for modal testing + assembly

Dynamic analysis of magnet plus support is needed for beam simulations and support optimisation

Stabilisation strategy

- •Two options studied => still in R&D phase
- •Preliminary results expected end of 2010

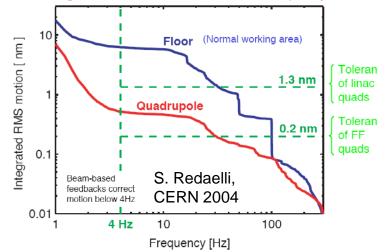
 Study both options and eventually choose one, or take the best of each

Option CERN: Rigid support and active vibration control

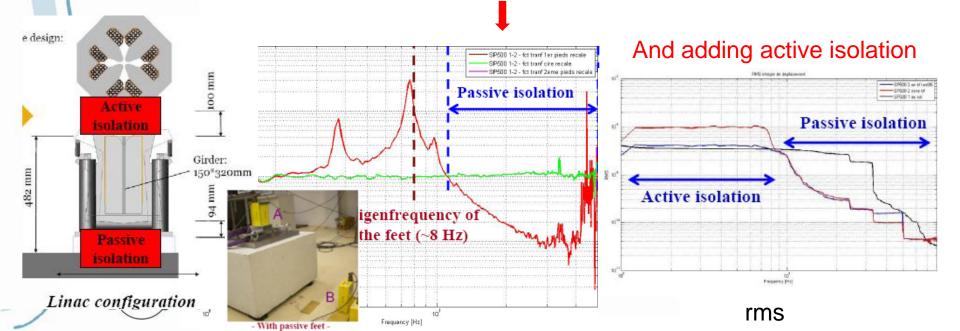
EUCARD

Concept drawing

Approach: PARALLEL structure with inclined actuator legs with integrated length measurement (<1nm resolution) and flexural joints

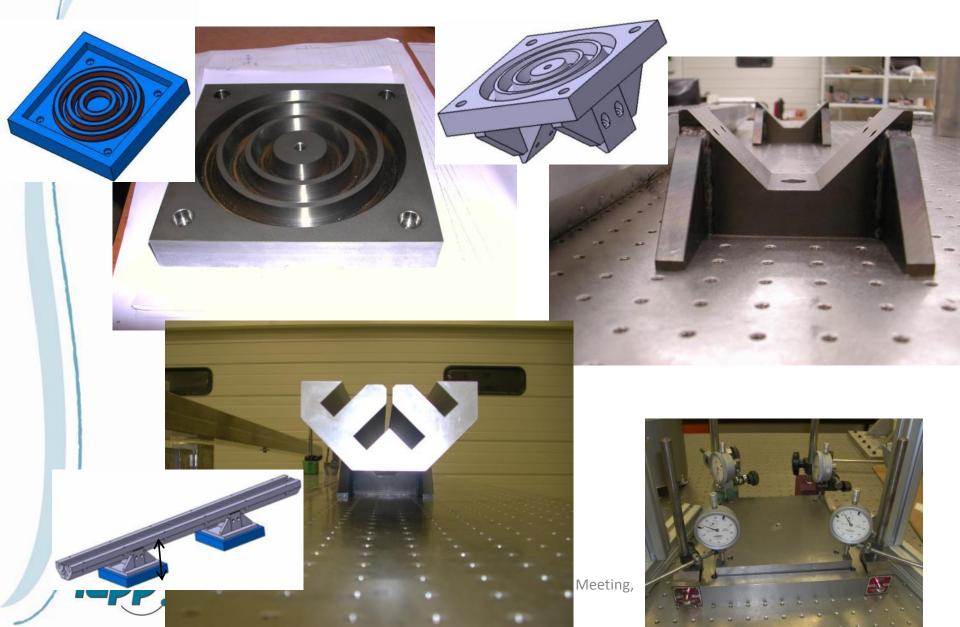

Rigid: less sensitive to but les damping Up to 6 d.o.f. external forces oroadband Option LAPP: Soft support (joint more for guidance than really « soft ») and active vibration control Soft elastomere sensors joint in between 3 d.o.f. : A.Jeremie, 1st EuCARD Annual M 15 April 2010 actuators

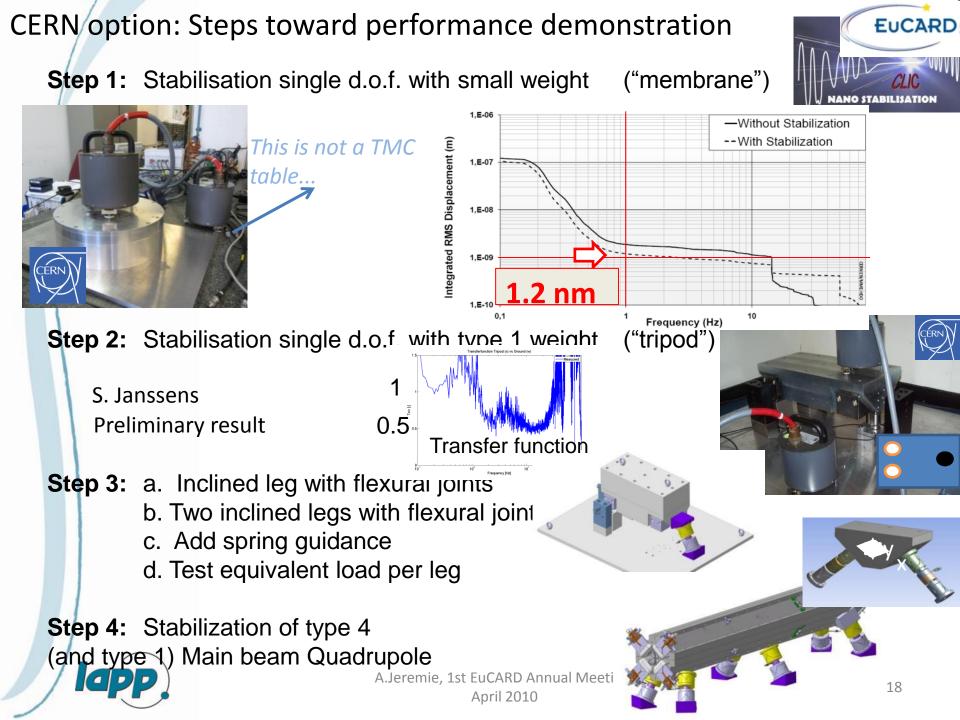
LAPP option

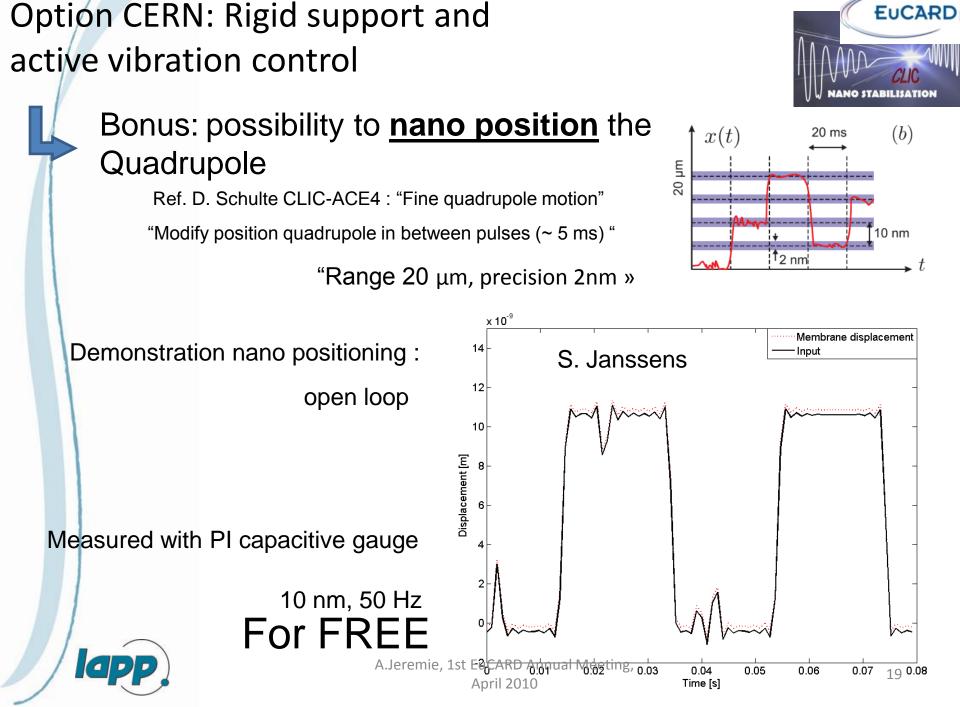


Until now, the isolation function was studied on a TMC commercial active table: almost CLIC specifications but too big/expensive! (2.4mx0.9mx0.6m)

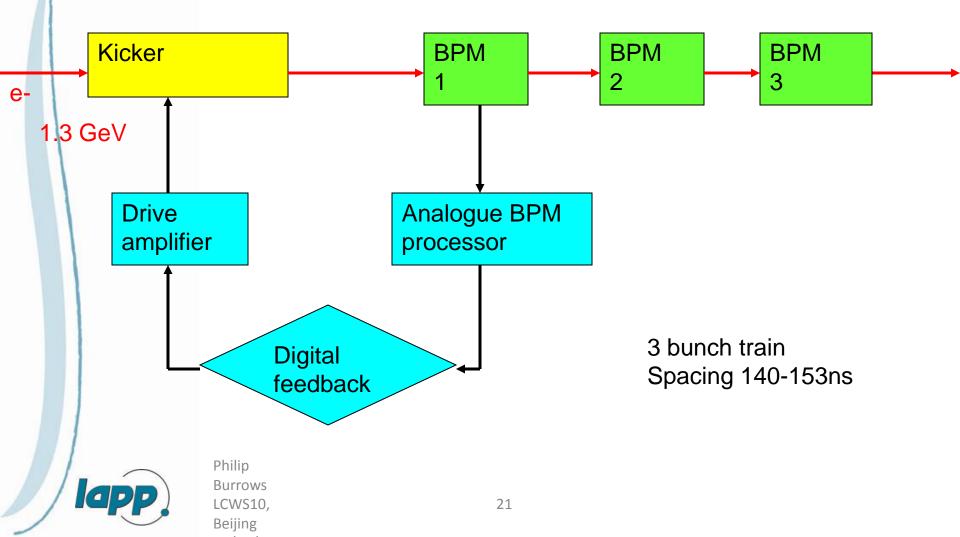
Integrated vertical RMS motion versus frequency

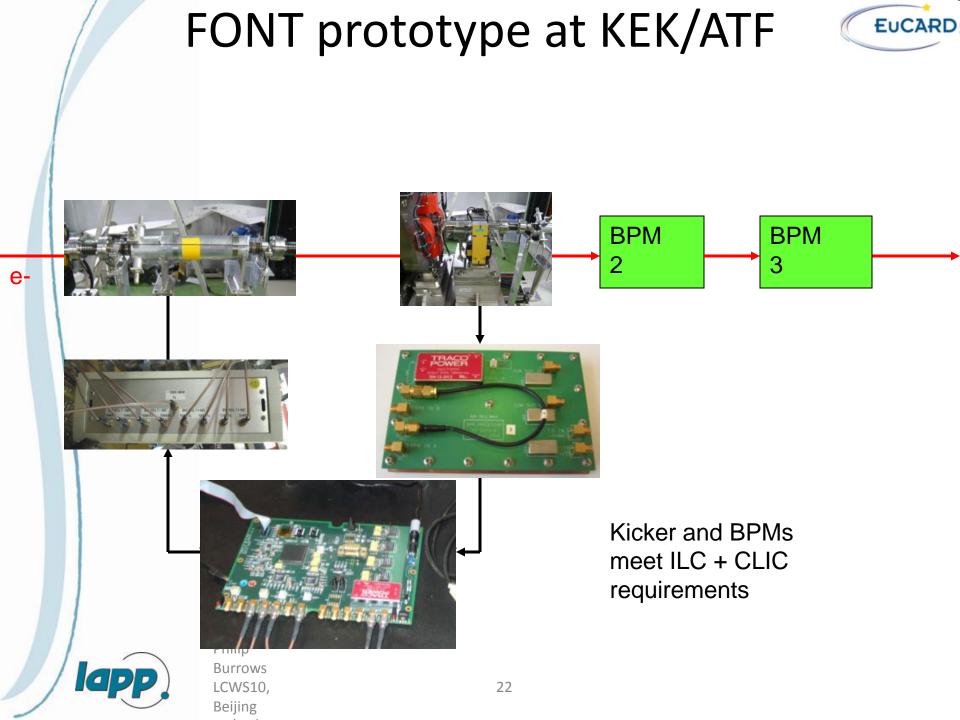



Approach: « Replace » TMC table by a more compact device



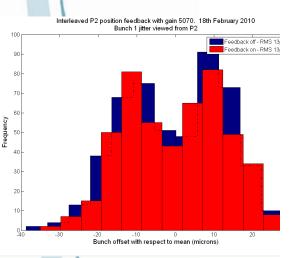
Status: Construction + tests on elastomer

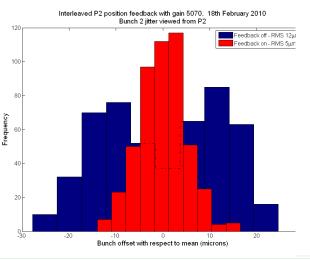


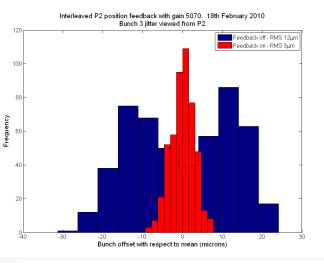

Stabilizing beam

A.Jeremie, 1st EuCARD Annual Meeting, April 2010

FONT prototype at KEK/ATF: stabilising the ATF 1GeV beam to the um level




Beam jitter reduction


(February 2010)

Bunch 1 Not corrected Bunch 2 Corrected

Bunch 3 Better corrected

 \rightarrow

5 um

3 um

EUCARD

Publications

•<EuCARD-CON-2009-028> "CLIC OVERVIEW"

•<EuCARD-CON-2009-026>,"FUNCTIONAL REQUIREMENTS ON THE DESIGN OF THE DETECTORS AND THE INTERACTION REGION OF AN E+E- LINEAR COLLIDER WITH A PUSH-PULL ARRANGEMENT OF DETECTORS"

•<EuCARD-CON-2009-019>,"SUPERCONDUCTING MAGNETS FOR A FINAL FOCUS UPGRADE OF ATF2"

•<EuCARD-CON-2009-025>,"BEAM TEST RESULTS WITH THE FONT4 ILC PROTOTYPE INTRA-TRAIN BEAM FEEDBACK SYSTEM"

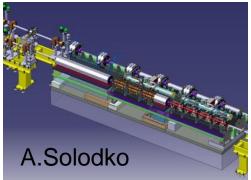
•<EuCARD-CON-2009-024>,"DESIGN AND PERFORMANCE OF INTRA-TRAIN FEEDBACK SYSTEMS AT ATF2"

•<EuCARD-CON-2009-023>, "DEVELOPMENT OF A FAST MICRON-RESOLUTION BEAM POSITION MONITOR SIGNAL PROCESSOR FOR LINEAR COLLIDER BEAMBASED FEEDBACK SYSTEMS"

•<EuCARD-CON-2009-022>,"PROPAGATION ERROR SIMULATIONS CONCERNING THE CLIC ACTIVE PREALIGNMENT"

 <EuCARD-CON-2009-021>,"GROUND VIBRATION AND COHERENCE LENGTH MEASUREMENTS FOR THE CLIC NANO-STABILIZATION STUDIES"
 <EuCARD-CON-2009-020>,"STUDY OF THE STABILIZATION TO THE NANOMETER LEVEL OF MECHANICAL VIBRATIONS OF THE CLIC MAIN BEAM QUADRUPOLES"
 <EuCARD DIS 2000.001> "Qualification do l'instrumentation nour des measures

 EuCARD-DIS-2009-001>,"Qualification de l'instrumentation pour des mesures nanométriques«


•<EuCARD-CON-2009-018>,"ATF2 COMMISSIONING"

Conclusions

- Active isolation devices still in R&D phase :
 - CERN rigid option (hexapod)
 - LAPP soft option (isolation feet)
 - Test both options on CLIC module prototypes

 But no device isolates perfectly and only by a given factor (x2 to x30): need a quiet background to stabilise to tolerances demanded for CLIC=> impact on the whole CLIC design (support, module, tunnel etc...

• spare

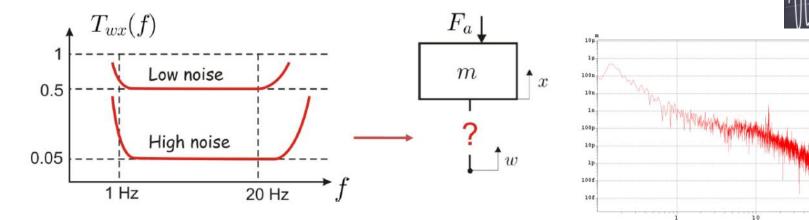
Güralp CMG-40T

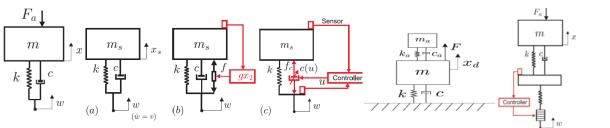
Sensor type: electromagnetic geophone broadband

Signal: velocity x,y,z Sensitivity: 1600V/m/s Frequency range: 0,033-50Hz Mass: 2,5kg Radiation: ? Magnetic field: no Feedback loop First resonance 440Hz Temperature sensitivity: 0,6V/10°C Electronic noise measured at >5Hz: 0,05nm Stable calibration

Endevco 86

Sensor type: piezoelectric accelerometer Signal: acceleration z Sensitivity: 10V/g Frequency range: 0,01-100Hz but useful from 7Hz Mass: 771g Radiation: piezo OK, but resin? ICP electronics will not. Magnetic field: probably OK but acoustic vibrations? Feedback loop First resonance 370Hz Temperature sensitivity: <1% Electronic noise measured at >5Hz: 0,25nm, >50Hz 0,02nm Stable calibration, flat response Doesn't like shocks


SP500


Sensor type: electrochemical, special electrolyte Signal: velocity Sensitivity: 20000V/m/s Frequency range: 0,016-75Hz Mass: 750g Radiation: no effect around BaBar (don't know exact conditions) Magnetic field: tested in 1T magnet => same coherence, amplitude? Feedback loop First resonance >200Hz Electronic noise measured at >5Hz: 0,05nm Unstable calibration, response not flat Robust

How to support the quadrupoles?

Ch. Collette Stabilisation WG 7

STABILISATION

			•	
	DESY, 1996	CERN, 2004	LAPP, 2007	SLAC, 2002
Experiment description	1 d.o.f	1 d.o.f	1 d.o.f	6 d.o.f, 42 kg
Actuator	Piezo	Piezo	Piezo	Electrostatic
Control strategy	FB	ТМС	TMC	FB
Positioning	NO	NO	NO	NO
Rigidity	Stiff	Soft	Soft	Soft
(RMSw/RMSx)@1Hz	~3 A.lerem	~3 nie. 1st EuCARD Ann	~2	~50
Stages	1	2 April 2010	2	1

Deliverables & Milestones

Deliverable	Description/title	Nature	Delivery
			month
9.3.1	CLIC Quadrupole Module final report	R	M48
9.3.2	Final Focus Test Stand final report	R	M48

Milestone	Description/title	Nature	Delivery month	Comment
9.3.1	Characterization of noise/vibrations sources in an accelerator	0	M24	
9.3.2	Installation of interferometers at CTF3 Module	D	M24	
9.3.3	Installation of ATF2 final-focus alignment monitoring system	D	M6	
9.3.4	Installation of ILC prototype FB/FF at ATF2	0	M24	
9.3.5	Commissioning of CLIC quadrupole module	D	M30	Complete module with girder and accelerating structure
9.3.6	Quadruple mock-up manufactured and ready for installation	D	M30	

