Detector possibilities: scintillator based detectors

EUCARD 1st Annual Meeting, RAL, 13 April 2010 Paul Soler

Scintillator based detectors

- Scintillator based detectors are widely used in neutrino experiments
- Many examples from past and present: CDHS, CHARM, CHARM-II, CCFR, NuTeV, MINOS, ND280, Minerva, NOVA...
- There are two examples that are being looked at in the context of detectors at a Neutrino Factory:
 - Magnetised Iron Neutrino Detector (MIND) of 50-100 kton comprising layers of iron and scintillator
 - This is the default option at a Neutrino Factory (10-20 times bigger than MINOS)
 - Totally Active Scintillating Detector (TASD) layers of scintillator making up 100% of target

Neutrino Factory

 Baseline design for a Neutrino Factory: two different detectors at two different baselines (~4000km, 7500km)

Magnetised Iron Neutrino Detector (MIND)

□ Golden channel signature: "wrong-sign" muons in magnetised calorimeter (Cervera et al. 2000)

Magnetic Iron Neutrino Detector (MIND)

□ Far detector (2000-7600 km) can search for "wrong-sign" muons in v beam appearance mode ______

5-10 × wrong sign

History of MIND analysis

- "Golden" paper (Cervera et al, 2000) was optimised for a small value of θ_{13} , so efficiency at low energy cut severely
- Used fast simulations and detector parameterisation
- MIND analysis redone for ISS (Cervera 2006)
 - Improved event selection,
 - Fast simulation
 - Perfect pattern recognition
 - Parameterisation based reconstruction
 - 1T dipole field instead of toroidal field
 - Fully contained muons by range
 - Scraping muons by curvature
 - Hadron shower: $E_{\nu}^{recon} = E_{had} + E_{\mu}$ $\left(\frac{\delta E}{E}\right)_{had} = \frac{0.55}{\sqrt{E_{had}}}$

History of MIND analysis

- "Golden" paper (Cervera et al, 2000) was optimised for a small value of θ_{13} , so efficiency at low energy cut severely
- New analysis: arXiV:1004.0358
 - Full reconstruction Kalman filter
 - Full pattern recognition
 - GEANT3 (LEPTO DIS)
 - Analysis chain using full likelihood functions
 - Still dipole field and hadron shower

MIND: new developments

Improvements MIND analysis with full GEANT4 simulation

Laing, Cervera, PS – 5th IDS Meeting Apr10

 Add quasi-elastics and resonance production (NUANCE): Non DIS processes dominate at low energies and should improve efficiency at low energies Results to be shown use 3 cm of iron and one 2 cm thick polystyrene plane.

Likelihoods: number hits in candidate, fraction visible energy, mean energy deposit per plane Preliminary

Parameters taken from MINOS.

Since energy deposit involves assumptions define two likelihood analyses:

- 1) Use hit parameter only.
- 2) Use combination of all three where available.

Two analyses: different combinations of likelihood functions

Analysis 2 requires more than one log parameter.

Tuning can achieve better efficiency or better background suppression.

Blue and Black signal. Other colours background

ν_μ Charged current background

Background to μ appearance

 Background to μ^+ appearance

Analysis 1 Black. Analysis 2 red

Neutral current background

Preliminary

Background to μ^{-} appearance

Background to μ^+ appearance

□ v_e Charged current background

Preliminary

Background to μ appearance

Background to μ^+ appearance

Two analyses: different combinations of likelihood functions

Preliminary

True v energy

Efficiency is clearly better for anti neutrino channel. While this is fine in principle it has to be understood.

MIND at NF sensitivity

Best sensitivity/cost with 100 kton at 4000 km and 50 kton at 7500 km

However, minimising systematics should be one of the main goals!!

Possible improvement: Totally Active Scintillating Detector (TASD) using Nova and Minerva concepts Ellis, Bross

- 3333 Modules (X and Y plane)
- Each plane contains 1000 slabs
- Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- □ Reconstructed position resolution ~ 4.5 mm

Reduction threshold: access second oscillation maximum and electron identification

Neutrino CC reconstructed efficiency TASD - NuMu CC Events

0.8 0.6 0.4

Excellent of

Muon charge mis-ID rate

Considered as default option for a low energy neutrino factory (muon energy 5 GeV): excellent charge mis-ID and efficiency above 0.5 GeV/c

Neutrino Energy (GeV/c)

Electron/positron identification by visual scanning

400 MeV/c e-

Main problem: magnetisation of huge volume (difficulty and cost)

However, possible magnetisation can be achieved using magnetic cavern concept (10 modules with 15m x 15 m diameter)

Bross

0.58 T at 50 kA

2.908E-180

- 1.808E-190

- 1.808E-190

- 1.700E-61

Use Superconducting Transmission

Line (STL): cable has its own cryostat!

R&D needed to develop concept!!

Possible use of TASD opens up possibility of running at a low energy neutrino factory (4 GeV) Bross, Ellis, Geer, Mena, Pascoli

Conclusions

- Scintillator based detectors have a proven track record in neutrino experiments and can be scaled up in size
- Golden channel (wrong sign muon) has the best statistical power – other channels have small contribution to standard oscillation physics
- Hence, two MIND detectors at 4000 km with 100 kton mass and 7500 km (magic baseline) with 50 kton gives best performance at standard neutrino factory (25 GeV)
- TASD detectors offer very good performance at low energy neutrino factory (~5 GeV)