14 April 2010

EuCARD

About the design of the FRESCA2 dipole (WP 7.3)

Attilio Milanese

Acknowledgements:
Gijs de Rijk, Ezio Todesco \& other colleagues @ CERN Paolo Ferracin, Shlomo Caspi @ LBNL Pierre Manil \& others @ CEA/Saclay

A map of dipoles

FRESCA = Facility for the Reception of

Conductor properties

$\mathrm{Nb}_{3} \mathrm{Sn}$ strand, 1 mm diameter
$\mathrm{J}_{\mathrm{c}}=2500 \mathrm{~A} / \mathrm{mm}^{2} @ 12 \mathrm{~T}, 4.2 \mathrm{~K}$
$\mathrm{J}_{\mathrm{c}}=1250 \mathrm{~A} / \mathrm{mm}^{2} @ 15 \mathrm{~T}, 4.2 \mathrm{~K}$
$\mathrm{Cu} /$ non- Cu ratio $=1.25$

Rutherford cable
40 strands, no keystoning
$21.4 \times 1.82 \mathrm{~mm}$ (bare)
$21.8 \times 2.22 \mathrm{~mm}$ (with 0.2 mm insul.)
filling factor $\kappa=0.289$

Critical surface fit

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{c}}=2500 * 0.90=2250 \mathrm{~A} / \mathrm{mm}^{2} @ 12 \mathrm{~T}, 4.2 \mathrm{~K} \\
& \mathrm{~J}_{\mathrm{c}}=1250 * 0.90=1125 \mathrm{~A} / \mathrm{mm}^{2} @ 15 \mathrm{~T}, 4.2 \mathrm{~K}
\end{aligned}
$$

"extracted strand" J_{c}-fit with 10\% degradation

Going from 4.2 K to 1.9 K in $\mathrm{Nb}_{3} \mathrm{Sn}$ increases B_{ss} of about 8\% or 1.1 T (in our case).

How much cable do we need?

Using analytical scaling laws for the design of dipoles based on sector coils, we need about 150 turns (per pole).

156 turns (per pole) have been chosen to start with.

How to use the cable?

layered $\cos -\theta$

14 April 2010, A. Milanese

[Toral et al., NED, 2006]

The $\cos -\theta$ option

LBNL D20
(138 turns per pole)
$12.5 \mathrm{~T} / 14 \mathrm{~T}=89 \%$

The cos- θ option: a cross section

Baseline $\cos -\theta$ with 4 layers (3-3-3-3)

The cos- θ option: a cross section

The blocks are positioned "radially".

$\operatorname{Cos}-\theta:$ Lorentz forces and stresses

For the azimuthal stresses on the midplane mean $\sigma_{\theta} \sim \Sigma \mathrm{F}_{\theta} / \mathrm{w}$

Cos- θ : preliminary FEM for stresses

NODAL SOLUTION
STEP=1
SUB $=1$
TIME $=1$
SY
RSYS=1
DMX $=.172 \mathrm{E}-03$
SMN $=-.133 E+09$
SMX $=-362546$
(AVG)
G)

ANSYS 11.0

$$
B_{c}=13 \mathrm{~T}
$$

azimuthal stresses
(from Lorentz forces)

The blocks option

Ti pole (layer 2)

Ti pole (layer 1)

LBNL HD2
 (61 turns per pole)

13.8 T / 15.6 T = 88\%
-

Blocks: a cross section

156 turns
$B_{s s, 4.2 \mathrm{~K}}=14.18 \mathrm{~T}$ $B_{s s, 1.9 \mathrm{~K}}=15.37 \mathrm{~T}$ $\mathrm{I}_{\mathrm{ss}, 4.2 \mathrm{~K}}=14.6 \mathrm{kA}$

Peak field / central field $=1.086$
$b_{3}=0.0$
$b_{5}=0.0$
$b_{7}=1.8$
$\mathrm{L}=42.2 \mathrm{mH} / \mathrm{m}$
$\mathrm{E}_{\mathrm{BC}=13 \mathrm{~T}}=3.8 \mathrm{MJ} / \mathrm{m}$
$\left(\mathrm{E}_{\mathrm{LHC}-\mathrm{MB}}=0.5 \mathrm{MJ} / \mathrm{m}\right)$

Blocks: Lorentz forces and stresses

baseline 41-41-37-37

Block	F_{X} $[M N / m]$	$\sigma_{\text {hor, ave }}=$ F_{X} / \mathbf{w} $[M P a]$
1	1.43	65
2	1.19	54
3	3.08	141
4	2.60	119

forces in MN / m $\mathrm{B}_{\mathrm{c}}=13 \mathrm{~T}$

HD2 @ short sample (4.2 K)
$\left(B_{s s}=15.0 \mathrm{~T}, 17.3 \mathrm{kA}\right)$

BI	$\mathrm{Fx}[\mathrm{MN} / \mathrm{m}]$	$\mathrm{Fy}[\mathrm{MN} / \mathrm{m}]$
1	2.30	-0.40
2	3.30	-2.20

Blocks: preliminary FEM for stresses

horizontal stresses (from Lorentz forces) STE $\mathrm{P}=1$ SUB $=1$ TIME=1
SX

$$
\mathrm{B}_{\mathrm{c}}=13 \mathrm{~T}
$$

Blocks: ideas for the structure (2d)

coil, layer 4
coil, layer 3

Blocks: ideas for the structure (2d)

Blocks: ideas for the structure (2d)

(split) iron
yoke

Iron effect in blocks design

BEM-FEM, LHC iron (with saturation)

Short sample @ 4.2 K

- no iron: 14.2 T
pole

- pads: 14.4 T
- pads and yoke: 14.8 T
- pole: 15.1 T
- pole, pads \& yoke: 15.7 T

Stray field with no iron is about 150 mT at 1 m from the bore $\left(B_{c}=15\right)$.

Blocks: ideas for the ends

HD2 "flared ends"

Straight section

Blocks: ideas for the ends

A first proof-ofconcept winding test has been performed with copper cable in March 2010.

The result is that such an end design looks feasible.

Conclusion

- preliminary analyses for a 13 T, 100 mm bore $\mathrm{Nb}_{3} \mathrm{Sn}$ dipole magnet have been concluded
- two layouts have been proposed: $\cos -\theta$ and blocks
- proof-of-concept winding tests for flared ends (blocks design) have been performed
- the choice of the layout is planned for beginning of May
- detail magnetic and mechanical design will then follow (2d and 3d)

Thank you.

