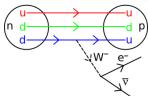


Progress on ion production studies for beta beams

Elena Wildner, CERN

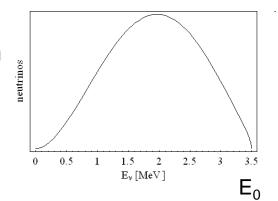
EuCARD 1st ANNUAL MEETING
Rutherford Appleton Laboratory (RAL), Oxfordshire-UK

Outline



- Beta Beam Concepts
- A Beta Beam Scenario
- Ion Production status
- Conclusion

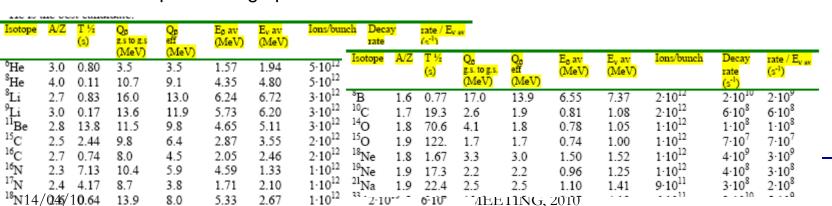
Aim: production of (anti-)neutrino beams from the beta decay of radioactive ions circulating in a storage ring

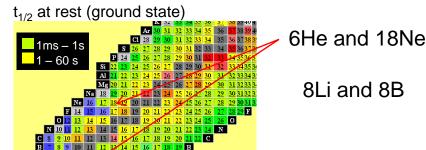

 Similar concept to the neutrino factory, but parent particle is a beta-active isotope instead of a muon.

Beta-decay at rest

- v–spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV
- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_v \le 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$

- Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
- Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation (high energy)
 - Cross-sections of neutrino-nucleus interaction (low energy)



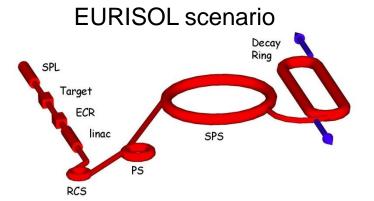


Choice of radioactive ion species

- Beta-active isotopes
 - Production rates
 - Life time
 - Dangerous rest products
 - Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario
 - In the order of a second
- Low Z preferred
 - Minimize ratio of accelerated mass/charges per neutrino produced
 - One ion produces one neutrino.
 - Reduce space charge problems

NuBase

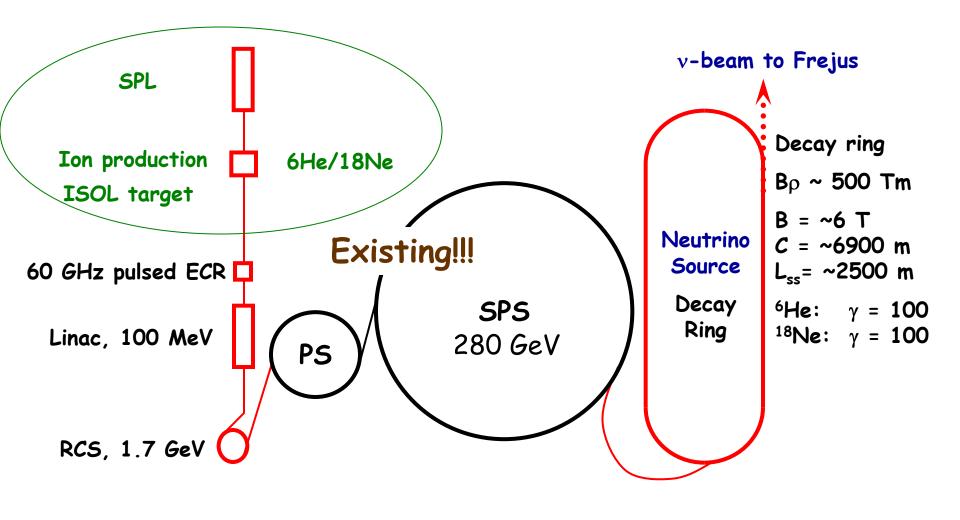
The EURISOL scenario^(*) boundaries

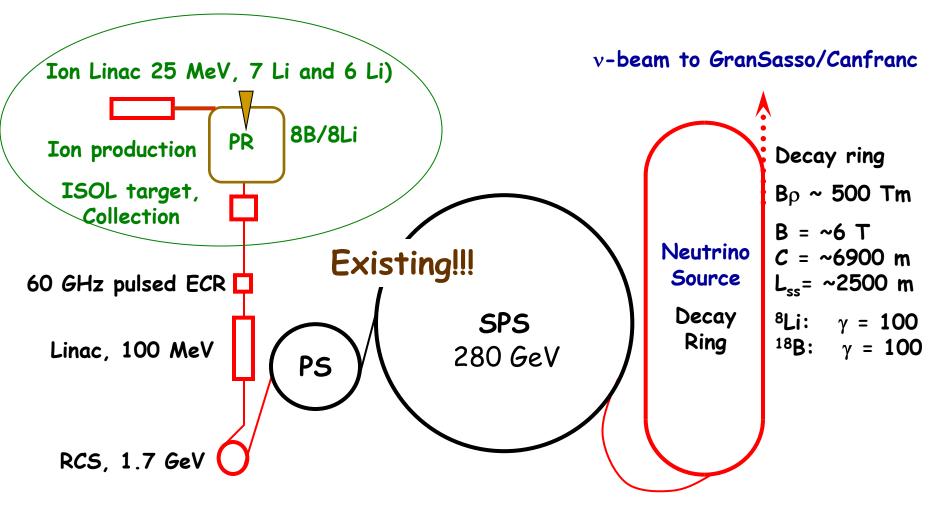


- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing machines and technologies
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory
- Achieve an annual neutrino rate of
 - 2.9*10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne

top-down approach

 The EURISOL scenario serves as reference for other studies and developments within Euroν (FP7) to study ⁸Li and ⁸B


(*) FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)


Beta Beam scenario 6He/18Ne

Beta Beam scenario 8Li/8B

Options for production 2008

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second Not sufficient
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Solution (?): Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Will be studied Within EUROv

Aimed:

He $2.9 \ 10^{18} \ (2.3 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.3 10^{13} /s)

Known losses through the accelerator complex included

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas how to produce Ne!

Estimated production

	# 8B Ions	# 8Li Ions	# 18Ne Ions	# 6He Ions
After Target	$9. \times 10^{13}$	9.×10 ¹³	2.3×10^{13}	2.34×10^{13}
ECR	2.07×10 ¹²	6.22×10^{12}	5.23×10 ¹¹	1.78×10^{12}
RCS inj	1.03×10 ¹²	3.1×10^{12}	2.61×10^{11}	8.85×10^{11}
RCS	1.01×10 ¹⁸	3.02×10^{12}	2.58×10^{11}	8.6×10 ¹¹
PS inj	1.54×10^{13}	4.2×10^{13}	4.49×10^{12}	1.15×10^{13}
PS	1.42×10^{13}	3.69×10^{13}	4.29×10^{12}	9.89×10^{12}
SPS	1.38×10^{13}	3.52×10^{13}	$4.24\!\times\!10^{12}$	9.34×10^{12}
Decay Ring	1.2×10 ¹⁴	2.97×10^{14}	7.38×10^{13}	$1. \times 10^{14}$
Annual v Rate			$\boxed{1.1\!\times\!10^{18}}$	3.01×10^{18}

RCS: Multiturn 50 %

ECR efficiency: 30 %

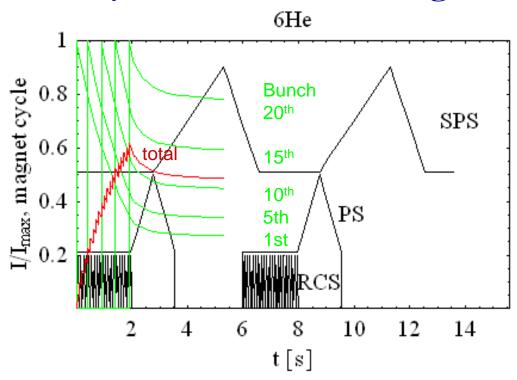
Decay Ring fraction: 0.36 (0.42 gives 10 % more Ne 15 % more He)

Linac, beam stabilty, vacuum... May still reduce the final flux from decay ing

Aimed:

He $2.9 \ 10^{18} \ (2.3 \ 10^{13}/s)$

Ne 1.1 10¹⁸ (2.3 10¹³/s)


But: Some scaling

- Accelerators can accelerate ions up to Z/A x the proton energy.
- $L \sim \langle E_{\nu} \rangle / \Delta m^2 \sim \gamma Q$, Flux $\sim L^{-2} = \rangle$ Flux $\sim Q^{-2}$
- Cross section ~ <E_ν > ~ γ Q
- Merit factor for an experiment at the atmospheric oscillation maximum: $M = \gamma/Q$
- Decay ring length scales ~ γ (ion lifetime)
- B and Li have 5 time higher Q and detector needs a factor 2:
 10 times more ions have to be accelerated: (Too) High challenge

Intensity evolution during acceleration

Cycle optimized for neutrino rate towards the detector

30% of first ⁶He bunch injected are reaching decay ring Overall only 50% (⁶He) and 80% (¹⁸Ne) reach decay ring

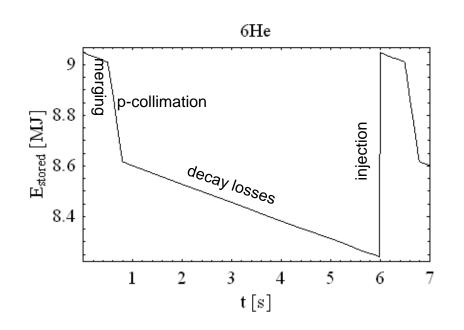
Normalization
Single bunch intensity to maximum/bunch
Total intensity to total number accumulated in RCS

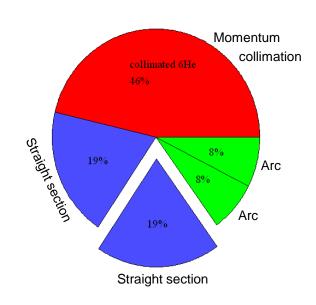
Duty factor and Cavities for He/Ne

10¹⁴ ions, 0.5% duty (supression) factor for background suppression !!!

20 bunches, 5.2 ns long, distance 23*4 nanosseconds filling 1/11 of the Decay Ring, repeated every 23 microseconds

Erk Jensen, CERN


For B and Li the duty factor can be relaxed by a factor 2!


- Not conclusive yet only first ideas more work is needed!
- The heavy transient beam loading is unprecedented.
- Since there is no net energy transfer to the beam, the problem might be solved using a linear phase modulation in the absence of the beam, mimicking detuning – this could reduce gap transients.
- A high Q cavity (S.C.?) would be preferable.

Particle turnover in decay ring

- Momentum collimation (study ongoing):
 - ~5*10¹² ⁶He ions to be collimated per cycle Decay: ~5*10¹² ⁶Li ions to be removed per cycle
- Dump at the end of the straight section will receive 30kW
- Dipoles in collimation section receive between 1 and 10 kW (masks).

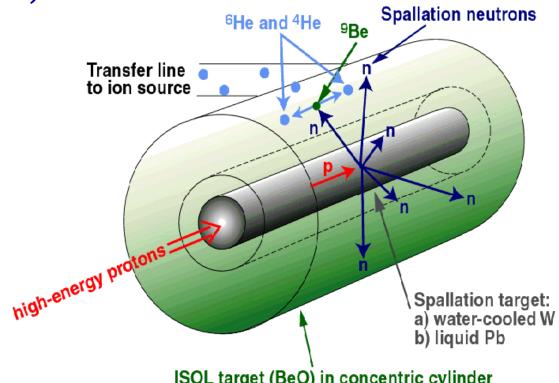
Options for production 2010

- ISOL method at 1-2 GeV (200 kW)
 - >3 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Is studied Within EUROv

Aimed:

He $2.9 \ 10^{18} \ (2.3 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.3 10^{13} /s)



⁶He (ISOL)

Converter technology: (J. Nolen, NPA 701 (2002) 312c)

T. Stora, CERN, N. Thiollieres, CEA

ISOL target (BeO) in concentric cylinder

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is ~3x10¹³ ions/s (dc) for ~200 kW on target.

Options for production 2010

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B Difficult Chemistry
 - Will be studied Within EUROv

Aimed:

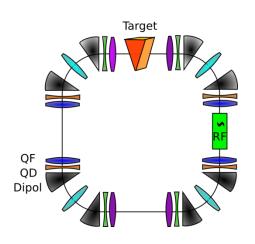
He $2.9 \ 10^{18} \ (2.3 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.3 10^{13} /s)

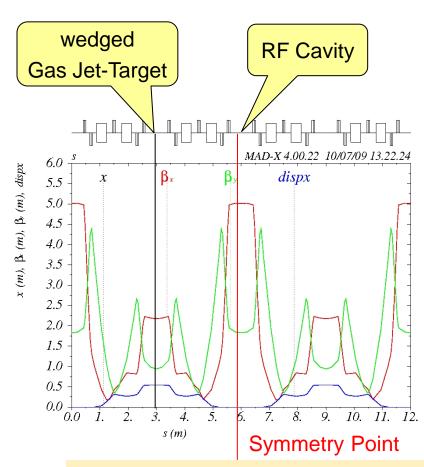
N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas to produce Ne!

8B and 8Li ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487


"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

Supersonic gas jet target, stripper and absorber ⁷Li(d,p)⁸Li ⁷Li 6Li(3He,n)8B Incident beam 6Li From C. Rubbia, et al. in NIM A 568 (2006) 475–487 $+\delta U$ Studied within Eurov (FP7) RF cavity



The production Ring: 8Li and 8B Ion Source

- Target simulations ongoing (FLUKA)
- Cross sections will be adjusted
- Cooling could be possible (simulations)
- Existing RF technologies are ok
- Gas jet target not possible

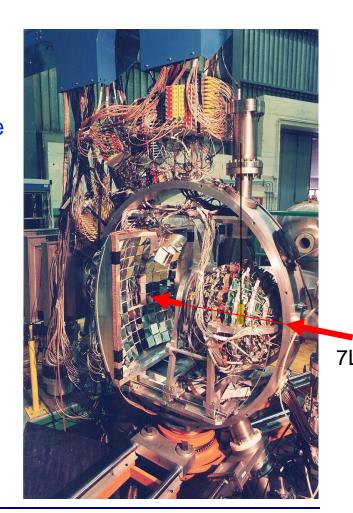
Michaela Schaumann , Aachen/CERN, 2009 Jakob Wehner, Aachen/CERN, 2009 Elena Benedetto, CERN, 2009

Cross section measurements at

Laboratori Nazionali di Legnaro

M.Mezzetto (INFN-Pd)

on behalf of

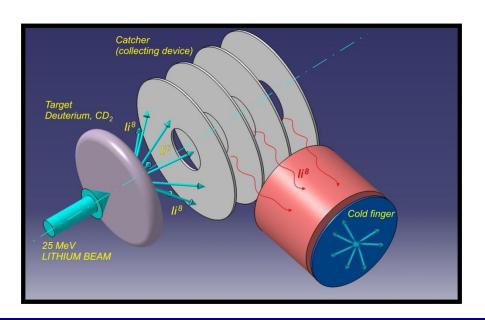

INFN-LNL: M. Cinausero, G. De Angelis, G. Prete

Results for Li available

Inverse kinematic reaction:

⁷Li + Cd₂ target E=25 MeV

Data reduction (presented Feb. 2010) will be used for beam cooling simulations in the production ring.

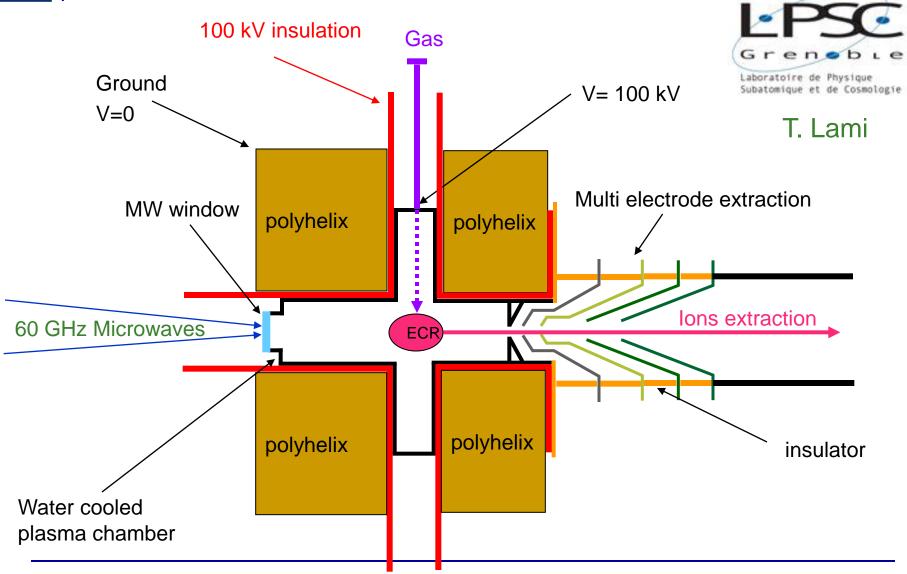


Challenge: collection device

Production of ⁸Li and ⁸B:

⁷Li(d,p) ⁸Li and ⁶Li(³He,n) ⁸B reactions using low energy and low intensity ~ 1nA beams of ⁶Li(4-15 MeV) and ⁷Li(10-25 MeV) hitting the deuteron or ³He target.

First results for Li will be presented in June 2010



- Semen Mitrofanov
- Thierry Delbar
- Marc Loiselet

60 GHz ECR Source

Options for production 18Ne

- ISOL method at 1-2 GeV (200 kW)
 - >3 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - Is studied Within EUROv

Aimed:

He $2.9 \ 10^{18} \ (2.3 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.3 10^{13} /s)

Options for production

Courtesy Thierry Stora

Туре	Accelerator	Beam	l _{beam} mA	E _{beam} MeV	P _{beam} kW	Target	Isotope	Flux s	Ok?	
ISOL & n-converter	SPL	р	0.1	2 10 ³	200	W/BeO	6He	5 10 ¹³		
ISOL & n-converter	Saraf/GANIL	d	15	40	600	C/BeO	6He	5 10 ¹³		
ISOL	Linac 4	р	6	160	700	19F Molten NaF loop	18Ne	1 10 ¹³		
ISOL	Cyclo/Linac	р	10	70	700	19F Molten NaF loop	18Ne	2 10 ¹³		
ISOL	LinacX1	зне (> 170	21	3600	MgO 80 cm disk	18Ne	2 10 ¹³		
P-Ring	LinacX2	7Li	0.160	25	4	d	8Li	?1 10 ¹⁴		
P-Ring	LinacX2	614	0.160	25		3He	8B	?1 10 ¹⁴		
Possible Needs some Experimentally OK										

Challenging

Needs some optimization

R & D !!!

On paper may be OK

Not OK yet

Work for ¹⁸Ne production

- Work on ¹⁸Ne production (production cross section, thermal dissipation, extraction losses, windows effects, known chemistry and corrosion effects with molten salts nuclear loops).
- Exploration up to 160 MeV to see if Linac4 would be a possible injector for beta beams.
- The goal is to provide a proposal with as close as possible technologies which are realistic. In particular, 100's kW rather than MW target dimensioning.
- Other future options for ⁸B studies will be envisaged at CERN-ISOLDE. INTC is getting interested.
 Courtesy T. Stora

Work on accelerators

- Collective effects in the SPS and the PS are studies He and Ne
- Will be used to check limits for intensities (later for B and Li)
- Deacy ring has been redesigned to increase the proportion of straight section (higher field magnets) and enhance the useful part of the Decay Ring (gives 10 for Ne)
- End to end simulations being set up to check all losses
- Check if we can run longer with Ne and less with He (increse intensity up to limit)

Choice of Beta Beam Baseline

- FP6 EURISOL Beta Beam
 - 18 Ne shortfall -> but 2009 work very encouraging
 - 6He intensities confirmed by experiment
 - Beam stability studies in FP7
 - Recoming a solid option
- FP7 EUROnu Beta Beam
 - Intensity needs multiplies by 10 (geometry, long baseline, detector)
 - Present accelerators limited
 - Detector needs another factor 2
 - Production ring not feasible (more research needed)
 - For the time being not a solid option

Conclusions

- We are coming close to a baseline for Beta Beams
 - Using 6He and 18Ne ions
 - Working hard with limited resources to achieve production
 - Now working for experimental verification (resources?)
 - Beta Beam accelerator complex beam stability studies
- Production Ring Studies pursued
 - Very difficult technologies to be developed (production)
 - Beam Stability?
 - Decay Ring Intensities not comfirmed
- Results to be presented 2012

FP6 "Structuring the European Research Area" programme (EC Contract 515768 RIDS) and FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

