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Tuning
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Goal: best possible physics prediction of MC generator

Realistic events contain physics at low scales where perturbation
breaks down

Rely on model assumptions that introduce many parameters
Need to find “meaningful” settings

Can be done manually but hard to do on a reasonable time-scale
because of MC run-time and dimensionality of problem

Charged particle  at 7 TeV, track p, > 100 MeV, for Ny, > 2




Tuning with Professor in a nutshell

» Random sampling: N parameter points in n-dimensional space
» Run generator and fill histograms (e.g. Rivet) trivial parallel
» Polynomial approximation per bin

» Construct goodness-of-fit measure
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In the following this will be called the “inner optimisation” problem



Inner and outer optimisation

» Incompatible datasets and mismodelling in MC generator
necessitate introduction of tuning weights wy,
» Adjusting the weights has so far been a manual procedure
» The user would iteratively run the “inner optimisation“ and look
at resulting plots
» We propose an automated procedure for this ”outer optimisation “:
o Write goodness-of-fit in terms of histograms/observables

e The parameter space is now the observable-weight space
o Inner optimisation yields best fit point, p, for given
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> p is used to evaluate an objective function for the outer
optimisation
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Portfolio objective

» For given p, we can calculate the per-observable goodness-of fit
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» With NV such measures, we can calculate mean and standard
deviation (dropped argument p| {we }or readability)
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» And construct an objective function to minimise
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Outer optimisation
» Minimisation of portfolio objective is iterative, gradient free
> We train a radial basis function (RBF) and use it to walk through
the weight space
» RBF minimisation alternates between local and global search
> Convergence is fast but depends on initial guess — multi-start
approach (that’s ok since inner optimisation is really fast)
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Evolution of inner optimisation

» This plot shows the p of the inner optimisation

» Shows the correlation of parameters
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Comparison of results

Transverse N density vs. p, /§ = goo GeV Transverse N density vs. p*!, /5 = 7 TeV.
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Rational approximation

» Polynomial approximation does not capture 1/z behaviour well
> E.g. masses in propagators, MPI cut-off

» — Multivariate rational approximation f(p) = g(p)/h(p)

» With g, h being polynomials of order m, n

» N.b. polynomials are limit where h(p) is constant (n = 0)
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Spurious poles and selecting m and n

» Especially in presence of noisy data: spurious poles

» For numerical reasons, denominator polynomial can have roots
> Root finding greatly helped by knowledge of gradient

» We have a brute force and a smart method to deal with that:
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Compute all possible approximations (m,n), pick the best without
pole

Instead of linear algebra, use non-linear optimisation with
constraints to solve ||f(p)h(p) — g(p)||, iteratively adding
constraints on poles when found
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Tuning uncertainties (with A. Buckley)

So far: exploit minimiser covariance matrix in parameter space

» Linear algebra to find principal directions

» In each direction: find intercept with x? contour

» Problem: Ax? = 1 recipe does not always work

» — Ad-hoc definition of Ax? by looking at plots (e.g. A14)

Transverse }_ V?‘ vs. Vlf“d in |57 < 2.5, excl dijet events
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Bootstrapping the goodness-of-fit
To overcome the ad-hoc nature, obtain the actual distribution of the
goodness-of-fit measure, ®?

» Tuning replicas — smear data within its
uncertainies, run minimisation for each
replica and record ®2

— XNa) =38

— Tuning
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TARGET

» Problem: coverage
test revealed that
there is a 25%
chance the central
tuning is outside
the 68th percentile
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Latest attempt

> Still do the tuning replicas
» Forget about ®2, x? values, forget about minimiser covariance
> Instead:

e Calculate covariance in parameter space from tuning replicas

e Linear algebra to find principal directions, eigenvalues for aspect

ratio of ellipsoid
o Find ellipsoid that contains 68.8% of tuning replicas
o Intercept with principal axes gives “Eigentunes”

W Central tune
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Construction
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Construction
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Construction
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Construction
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Summary

» Algorithm for a more automated tuning:

o Outer optimisation loop in the weight space
e Minimisation of portfolio objective function

» Algorithm for multivariate rational approximation
e Rational approximation are a natural extension of polynomials
used so far
e Better quality interpolations
e Spurious poles are a bit of a nuisance but can now be dealt with

> New suggestion to get tuning uncertainties

e Tuning replicas through data smearing
e Confidence ellipsoid construction and intercept with principal
directions
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