Teaching PROFESSOR new math

Holger Schulz, Juliane Müller, Sven Leyffer, Mohan Krishnamoorthy, Anthony Austin, Stephen Mrenna MPI@LHC 2018 Perugia, 13 December 2018

Tuning

- ▶ Goal: best possible physics prediction of MC generator
- ▶ Realistic events contain physics at low scales where perturbation breaks down
- ▶ Rely on model assumptions that introduce many parameters
- ▶ Need to find "meaningful" settings
- ► Can be done manually but hard to do on a reasonable time-scale because of MC run-time and dimensionality of problem

Tuning with Professor in a nutshell

- ightharpoonup Random sampling: N parameter points in n-dimensional space
- ▶ Run generator and fill histograms (e.g. Rivet) trivial parallel
- ▶ Polynomial approximation per bin
- ► Construct goodness-of-fit measure

$$\phi^2(\vec{p}) = \sum_b w_b^2 \cdot \frac{(f_b(\vec{p}) - \mathcal{R}_b)^2}{\Delta^2}$$

▶ and numerically *minimise* with iminuit

In the following this will be called the "inner optimisation" problem

Inner and outer optimisation

- ▶ Incompatible datasets and mismodelling in MC generator necessitate introduction of tuning weights w_b
- ▶ Adjusting the weights has so far been a manual procedure
- ► The user would iteratively run the "inner optimisation" and look at resulting plots
- ▶ We propose an automated procedure for this "outer optimisation":
 - Write goodness-of-fit in terms of histograms/observables
 - The parameter space is now the observable-weight space
 - Inner optimisation yields best fit point, \hat{p} , for given

$$\{w_{\mathcal{O}}\}$$

$$\sum_{\mathcal{O}=1}^{N} w_{\mathcal{O}}^{2} \cdot \sum_{b \in \mathcal{O}} \frac{(f_{b}(\vec{p}) - \mathcal{R}_{b})^{2}}{\Delta^{2}} \xrightarrow{\text{Minimisation yields}} \left[\hat{p} | \{w_{\mathcal{O}}\} \right]$$

 \hat{p} is used to evaluate an objective function for the outer optimisation

Portfolio objective

 \blacktriangleright For given \hat{p} , we can calculate the per-observable goodness-of fit

$$\nu_{\mathcal{O}}(\hat{p}|\{w_{\mathcal{O}}\}) = \frac{1}{N_{\text{bins}}(\mathcal{O})} \sum_{b \in \mathcal{O}} \frac{(f_b(\hat{p}|\{w_{\mathcal{O}}\}) - \mathcal{R}_b)^2}{\Delta^2}, \ \mathcal{O} = 1, \dots, N$$

▶ With N such measures, we can calculate mean and standard deviation (dropped argument $\hat{p}|\{w_{\mathcal{O}}\}$ for readability)

$$\mu = \frac{1}{N} \sum_{\mathcal{O}=1}^{N} \nu_{\mathcal{O}}$$

$$\sigma^2 = \frac{1}{N} \sum_{\mathcal{O}=1}^{N} \left[\nu_{\mathcal{O}} - \mu\right]^2$$

▶ And construct an objective function to minimise

$$\min_{w_{\mathcal{O}} \in [0,1]} \lambda \cdot \mu(\hat{p}|\{w_{\mathcal{O}}\}) + \sigma^{2}(\hat{p}|\{w_{\mathcal{O}}\}), \quad \text{s.t. } \sum_{\mathcal{O}=1}^{N} w_{\mathcal{O}} = 1.$$

Outer optimisation

- ▶ Minimisation of portfolio objective is iterative, gradient free
- ▶ We train a radial basis function (RBF) and use it to walk through the weight space
- ▶ RBF minimisation alternates between local and global search
- ► Convergence is fast but depends on initial guess → multi-start approach (that's ok since inner optimisation is really fast)

Evolution of inner optimisation

- ▶ This plot shows the \hat{p} of the inner optimisation
- ▶ Shows the correlation of parameters

Comparison of results

Rational approximation

- \triangleright Polynomial approximation does not capture 1/x behaviour well
- ► E.g. masses in propagators, MPI cut-off
- ightharpoonup Multivariate rational approximation $f(\vec{p}) = g(\vec{p})/h(\vec{p})$
- \triangleright With g, h being polynomials of order m, n
- ▶ N.b. polynomials are limit where $h(\vec{p})$ is constant (n=0)

Spurious poles and selecting m and n

- Especially in presence of noisy data: spurious poles
- ▶ For numerical reasons, denominator polynomial can have roots
- ▶ Root finding greatly helped by knowledge of gradient
- ▶ We have a brute force and a smart method to deal with that:
 - Compute all possible approximations (m, n), pick the best without pole
 - Instead of linear algebra, use non-linear optimisation with constraints to solve $\|f(\vec{p})h(\vec{p}) g(\vec{p})\|$, iteratively adding constraints on poles when found

Tuning uncertainties (with A. Buckley)

So far: exploit minimiser covariance matrix in parameter space

- ▶ Linear algebra to find principal directions
- ▶ In each direction: find intercept with χ^2 contour
- ▶ Problem: $\Delta \chi^2 = 1$ recipe does not always work
- ightharpoonup Ad-hoc definition of $\Delta \chi^2$ by looking at plots (e.g. A14)

Bootstrapping the goodness-of-fit

To overcome the ad-hoc nature, obtain the actual distribution of the goodness-of-fit measure, Φ^2

▶ Tuning replicas — smear data within its uncertainies, run minimisation for each replica and record Φ^2

Problem: coverage test revealed that there is a 25% chance the central tuning is outside the 68th percentile of Φ^2

Latest attempt

- ► Still do the tuning replicas
- ▶ Forget about Φ^2 , χ^2 values, forget about minimiser covariance
- ► Instead:
 - Calculate covariance in parameter space from tuning replicas
 - Linear algebra to find principal directions, eigenvalues for aspect ratio of ellipsoid
 - Find ellipsoid that contains 68.8% of tuning replicas
 - Intercept with principal axes gives "Eigentunes"

Summary

- ▶ Algorithm for a more automated tuning:
 - Outer optimisation loop in the weight space
 - Minimisation of portfolio objective function
- ▶ Algorithm for multivariate rational approximation
 - Rational approximation are a natural extension of polynomials used so far
 - Better quality interpolations
 - Spurious poles are a bit of a nuisance but can now be dealt with
- ▶ New suggestion to get tuning uncertainties
 - Tuning replicas through data smearing
 - Confidence ellipsoid construction and intercept with principal directions