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Outlook

e Short introduction to jet reconstruction and substructure
e The Soft Drop algorithm

e Measurement of the soft-drop jet mass in ATLAS at 13 TeV
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What is a jet?

e At short distances quarks and gluons move as quasi-free particles (asymptotic freedom)
e When they are energetic, they produce bremsstrahlung cascades of gluons and qqgbar pairs, which

then hadronise
e We see jets of tightly collimated hadrons
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e There are a lot at the LHC! (dominant high p.. process)

e Jet properties reflect those of the quarks and gluons which
originated them

e A good handle to test the QCD sector of the SM over
several orders of magnitude

Proton structure (PDF)

Strong coupling constant, a_
Perturbative QCD effects
Fragmentation/Hadronization effects
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Jet reconstruction

e Seqguential recombination algorithms most popular in the LHC era (G. Salam, arXiv:0906.1833)
e Collinear and infrared safe!

e The clustering inverts the parton shower by combining the constituents of the jet according to
subsequent ‘distance’ criteria

ARZI
R2

dj min(p;, pF) X
dg = p7

e Inclusive jet reconstruction: clustering continues until the minimum distance is found to be d;

e (n=1) k. : Softest pair of constituents clustered first. Follows IR and collinear splittings.

e (n=0) Cambridge-Aachen (C/A): Closest pair of constituents clustered first. Mimics angular-ordered
parton shower.

e (n=-1) anti-k, : Hardest constituent clustered with closest neighbour. Regularly shaped jets.
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Jet substructure

e C(lassical “resolved” algorithms run into problems for highly boosted final states

e Alarge radius jet of R > 2m/p_ can contain all decay products of a given particle
o Top quark, Higgs/W/Z bosons, new heavy particles ...

At rest: Mtt<500 GeV Mono—jet: Mtt>700GeV

e Internal structure of the large R jet shows interesting features that can be used to identify the origin of
the jet
o distinguish multi-jet background from signals
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Jet substructure: measurements

e Jet substructure techniques are paramount to deal with boosted objects in the LHC

e New measurements of jet substructure are also solidifying our understanding of the internal structure
of jets and the theory of QCD
O  k; splitting scales in Z — Il events at 8 TeV with the ATLAS detector. JHEP08 (2017) 26

O  Colour flow using jet-pull observables in tf events at 13 TeV. ATLAS-CONF-2017-069
O  Soft-drop jet mass at 13 TeV. Phys. Rev. Lett. 121, 092001

e Non-negligible differences from data are observed in MC predictions

e (Can constrain both analytic calculations in perturbative regime and soft hadronic activity in
non-perturbative region
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Soft Drop

e Jet substructure tests QCD in a regime where a fixed-order is insufficient
o Sensitive to soft and collinear radiation

e A precise analytic calculation of substructure variables (beyond leading log) not possible due to the
presence of non-global logarithmic ressumation terms (NGLs).
o Related to particles radiating out of and then into jet

e A perfect example is jet mass
o Dominated by resummation and not fixed-order

e Soft drop. [JHEP 1405 (2014) 146]
o Jet grooming procedure that removes energy related to soft parton emission and pile-up
o Formally insensitive to NGLs

e The distribution of the soft-drop mass has now been calculated at
o NLO with NLL. [JHEPO7(2016)064]
o LO with NNLL. [JHEPO7(2017)132]
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The Soft Drop algorithm

e Take ajet, re-cluster its constituents with C/A, and go backwards in the C/A clustering sequence

J2

A

min(pr 1,PT,2)
PT,1TPT,2

o If

> Zcut( 212 ),3 then the jet is a soft drop jet.

e Otherwise, the highest p. sub-jet is taken as a new candidate and the procedure is iterated.
e z_,sets the scale of energy removal. Higher z_ , means more energy removed by grooming.
e [} determines the sensitivity to wide-angle radiation.

o Larger B means smaller fraction of soft small-angle radiation removed -> less grooming.
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ATLAS measurement of the soft-drop jet mass
Phys. Rev. Lett. 121, 092001 (2018)
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Soft-drop jet mass measurement

Using anti-k. R=0.8 jets built from locally calibrated calorimeter-cell clusters
Lowest un-prescaled trigger (400 GeV) and p. > 600 GeV

Dijet topologies: p; ,/p;, < 1.5 for two leading jets
Measuring dimensionless mass parameter, p = m ungroomed
o Weak dependence on p.

o Distribution of Iogm(pz) studied for $ =0,1,2and z_, = 0.1

softdrop / pT

Simultaneously unfolding in Iogm(pz) and jet p; distributions using Pythia LO predictions

Three distinct regions
o  Non-perturbative region: Iogm(pz) < -3.7 (soft and collinear emissions)
o Resummation region: -3.7 < Iogm(pz) < -1.7 (resummation dominates)
o Fixed-order region: Iog10(p2) > -1.7 (wide-angle hard gluon emissions)
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ATLAS Simulation

n
U nfo I d I n g anti-k,, R = 0.8, Soft drop (C/A re-clustering), = 2
. L o

e Pythia used as nominal
o Sherpa and Herwig++ to evaluate uncertainty

80

10

, log__(p?) bin

T

60

Pr(truth | reco) [%]

Reco p

e Particle-level selection as close as possible to detector-level
o Jets built using the same algorithm
o Events must pass the same dijet requirement
o Additional correction for the acceptance included

20

° Iogm(pz) and p; unfolded simultaneously

e Example of response matrix for the combined p. and Iogm(pz) bins °

o Each group of 10 bins corresponds to a different p_ bin

o Each bin within the p_ bin corresponds to 10 evenly spaced bins in Iog10(p2)

o The bins are normalized so that the z-axis corresponds to the probability of a jet lying in a particular
truth bin, given its reconstructed bin

Truth P, Iogw(pz) bin

There are substantial migrations between the detector- and particle-level distributions, which cause large
off-diagonal terms in the unfolding matrix especially at low values of log, 0(p2)
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.‘é - ATLAS ] Total uncertainty
I . . . [0} o3~ e MC statistical error
e Many uncertainties cancel since p is a ratio g ~ Vs=13 TeV, 32.9 fb™ Data statistical error
- = -  myeme QCD Modeling
Q 0.o5FSoftdrop,=0,z =0.1 S Nonclosure
. - . b= — cut ——— Cluster angular resolution
e QCD modeling uncertainties dominate = C anti-k, R=0.8, p'*** > 600 GeV - — = = Cluster energy scale shift
o ~ ! T - Cluster energy scale smearing

o
N

o Particularly large at low mass where : — — Pileup modeling
non-perturbative effects are largest

T
'
.

0.15

e Cluster energy uncertainties 01
o Large at lower masses
m Low cluster multiplicity
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%5 -4 35 -3 =25 -2 -15 -1  -05
soft drop ungroomed, o.
o Also important at higher masses log l(m " /p ]

m Energy of hard prongs dominates the mass resolution instead of the opening angle

e Other uncertainties are subdominant
o Pile-up negligible as expected
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Results: log. (p?) vs p;
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e log, 0(p2) for the p. bins used in the analysis (from 600 GeV up to 2000 GeV)
e As expected, there is no strong dependence on p,
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Results
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e Distributions normalised to data in resummation region
e MC generators do an excellent job of describing data over entire mass range
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e (Good agreement between data and analytic calculations in resummation region
o and fixed-order region for NLO calculations
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Including non-perturbative effects improves the accuracy of the NLO+NLL prediction
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Results
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e Largest difference between data and MC/analytic predictions in non-perturbative regime
o Effect larger for higher B (smaller fraction of soft energy removed)
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Conclusions

e Jet substructure studies are essential to find new physics in post-Higgs era

e Proper estimation of uncertainties, and robustness against pile-up is critical

e Need measurements, and best possible MC modeling

e Presented ATLAS measurement of the soft-drop jet mass at 13 TeV. Phys. Rev. Lett. 121, 092001
o Good agreement between data and calculations in resummation and fixed-order regions
o MC generators do better in non-perturbative region

o Results to be used to constrain future calculations and MC generator predictions

e Future directions include measurements of related soft-dropped observables, and track based
measurements which can potentially reduce the systematic uncertainties
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MC generators

e Pythia 8.186
o NNPDF2.3LO PDF
o A14 for PS and UE
o p;-ordered PS

e Sherpa 2.1.1
o CT10LO PDF
o Default Sherpa event tune for PS and UE
o Angular-ordered PS

e Herwig++ 2.7.1
o CTEQ6L1 PDF
o UE- EE-5tune
o Angular -ordered PS

e All MC samples use Pythia 8 minimum bias events to simulate pile-up
o MSTW2008LO PDF and A2 tune
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The Large Hadron Collider (LHC)
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The ATLAS detector

25m
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Muon chambers

Toroid magnets

Solenoid magnet
Semiconductor fracker

Pixel detector

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

LAr electromagnetic calorimeters

Transition radiation tracker
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A Toroidal LHC ApparatuS
o 44 mlong, 25 m of diameter
o 4 layers of detectors

Inner detector
o pixel, strip, TRT

Electromagnetic calorimeter
Hadronic calorimeter

Muon detector
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LHC and ATLAS performance
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At LHC two bunches of protons collide every 25 ns (40 MHz)

LHC design instantaneous luminosity: 10®* cm=2 s™

Hard collisions -> between two elementary components of the
protons (q or Q)

Other components of the same hadrons produce “underlying event”

Several collision events per proton bunch crossing “pile-up events”
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LHC and ATLAS performance
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Jets in ATLAS

e Jet production is the dominant
high-p,. process in the LHC

EM or LCW
constituent scale jets

Jet finding applied to
topological clusters at
EM or LCW scale

e Jet observables play an
important role in the study of:
o The structure of the proton
o The color interaction and
its coupling strength a_

e Anti-k; jets

e Built considering topological clusters of
calorimeter cells

e Clusters corrected for pileup prior to jet building

e Multi-stage calibration scheme
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Origin Correction

Absolute EtaJES

Fractional JES uncertainty

Changes the jet direction
to point to the primary
vertex. Does not affect E.

Corrects the jet 4-vector
to the particle level scale.
Both the energy and
direction are calibrated.
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Residual pile-up
correction

Function of event pile-up
energy density and jet area

Residual in-situ
calibration

Global sequential
calibration

A final residual calibration
is derived using in-situ
measurements and is
applied only to data

Based on tracking and
muon activity behind jets.
Reduces flavour dependence
and energy leakage effects.
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Function of y and NPV
applied to the jet at
constituent scale
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