# Studying Minijets and Multiple Particle Interactions with Rapidity Correlations

Mark Strikman

in collaboration with M. Azarkin, P. Kotko, and A. Siodmok based on arXiv:1808.06770

Slides prepared by A.Siodmok

## Outline

- 1. Motivation
- 2. Multiple Particle Interactions (MPI) models in Monte Carlo Event Generators
- 3. New observable to study rapidity correlation of minijets
- 4. Summary and outlook

#### Motivation. How do we know MPI exists?



FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low  $p_T$  only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.



FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e.,  $\bar{O}_0(b)$ ].

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

## Motivation. Data can help to improve the MPI models

Different MPI models have different assumptions, different parameter settings for example:



Extrapolation to non-perturbative region

#### Motivation. How do we know MPI exists?

Different MPI models have different assumptions, different parameter settings for example:

Similar predictions, for example two Herwig predictions below:

blue and green <=> blue and brown from left Fig.



Extrapolation to non-perturbative region



# 1. Monte Carlo Event Generators (all QCD faces)



The general approach is the same in different programs but the models and approximations used are different.

## 1.MPI models in Monte Carlo Event Generators

Inclusive hard jet cross section in pQCD:

$$\sigma^{\text{inc}}(s, p_t^{\text{min}}) = \sum_{i,j} \int_{p_t^{\text{min}^2}} dp_t^2 \int dx_1 dx_2 \ f_i(x_1, Q^2) f_j(x_2, Q^2) \ \frac{d\hat{\sigma}_{ij}}{dp_t^2}$$



 $\sigma^{\rm inc} > \sigma_{\rm tot}$  eventually

## Interpretation:

- $\sigma^{\text{inc}}$  counts all partonic scatters in a single pp collision
- more than a single interaction

$$\sigma^{\rm inc} = \langle n_{\rm dijets} \rangle \sigma_{\rm inel}$$

## MPI Eikonal model basics – Overlap function

#### Assumptions:

▶ the distribution of partons in hadrons factorizes with respect to the b and x dependence ⇒ average number of parton collisions:

$$\begin{split} \bar{n}(\vec{b},s) &= L_{\text{partons}}(x_1,x_2,\vec{b}) \otimes \sum_{ij} \int \mathrm{d}p_t^2 \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_t^2} \\ &= \sum_{ij} \frac{1}{1+\delta_{ij}} \int \mathrm{d}x_1 \mathrm{d}x_2 \int \mathrm{d}^2\vec{b}' \int \mathrm{d}p_t^2 \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_t^2} \\ &\quad \times D_{i/A}(x_1,p_t^2,|\vec{b}'|) D_{j/B}(x_2,p_t^2,|\vec{b}-\vec{b}'|) \\ &= \sum_{ij} \frac{1}{1+\delta_{ij}} \int \mathrm{d}x_1 \mathrm{d}x_2 \int \mathrm{d}^2\vec{b}' \int \mathrm{d}p_t^2 \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_t^2} \\ &\quad \times f_{i/A}(x_1,p_t^2) G_A(|\vec{b}'|) f_{j/B}(x_2,p_t^2) G_B(|\vec{b}-\vec{b}'|) \\ &= A(\vec{b}) \sigma^{\mathrm{inc}}(s;p_t^{\mathrm{min}}) \; . \end{split}$$

 at fixed impact parameter b, individual scatterings are independent (leads to the Poisson distribution)

## MPI model in Herwig 7 – key components

#### Matter distribution ( $\mu^2$ )



Based on electromagnetic form factor (radius of the proton free parameter)

#### Extension to soft MPI



Energy dependent p<sub>t</sub><sup>min</sup>

#### Colour structure ( $p_{reco}, p_{CD}$ )



Possibility of change of color structure (color reconnection)

[Gieseke, Röhr, AS, EPJC 72 (2012)]

The least understood part of modeling

## Main parameters:

- $ightharpoonup \mu^2$  inverse hadron radius squared (parametrization of overlap function)
- $p_t^{\min}$  transition scale between soft and hard components  $\Rightarrow p_t^{\min} = p_{t,0}^{\min} (\frac{\sqrt{s}}{E_0})^b$
- $\triangleright$   $p_{reco}$  colour reconnection

## MPI model in Herwig 7 – key components

#### Matter distribution ( $\mu^2$ )



Based on electromagnetic form factor (radius of the proton free parameter)

#### Pythia:

- Many options including double Gaussian (similar shape to EE)
- x-depended overlap [Corke,

Sjostrand, JHEP 1105:009]

#### Extension to soft MPI

$$(p_t < p_t^{\min})$$

$$\frac{\left(p_t < p_t^{\min}\right)}{\left(p_t - p_t^{\min}\right)}$$

$$\frac{\left(p_t - p_t^{\min}\right)}{\left(p_t - p_t^{\min}\right)}$$

Gaussian extension below  $p_t^{min}$ 

Energy dependent  $p_t^{min}$ 

#### Pythia:

Regularise cross section with  $p_t^{min}$  as free parameter:

$$\frac{d\sigma}{dp_T^2} \propto \frac{\alpha^2(p_T^2)}{p_T^4} \rightarrow \frac{\alpha^2(p_T^2 + p_t^{\min 2})}{(p_T^2 + p_t^{\min 2})^2}$$

Colour structure ( $p_{reco}, p_{CD}$ )



Possibility of change of color structure (color reconnection)

[Gieseke, Röhr, AS, EPJC 72 (2012)]

The least understood part of modeling (very active area research)

#### Pythia:

The most recent development: String

Formation Beyond Leading Colour J.

Christiansen, P. Skands

[arXiv:1505.01681]

#### MPI model in Monte Carlo Generators

**Herwig++** MPI model with independent hard and soft processes, showered and with colour reconnection. Just few parameters.

**Pythia** MPI interleaved with showering. MPI ordered in  $p_T$ . Many options and parameters (Pythia has strong emphasis on NP physics)  $\Rightarrow$  many tune families.

Sherpa New model - SHRiMPS with integrated diffraction based on KMR (Khoze-Martin-Ryskin model). Model in development

#### MC versions

 Pytnia 8: tunes CP2, CP4, CP5 (newest CMS tunes) and CUETP8M1 (When I will show the results I will explain some differences between them)

#### Similar description of both MB and UE data



- Herwig++: two tunes both giving very good description of UE data over different s
- Sherpa: only one tune exists (many parameters, not so good description of MB/UE data)

Mini jet correlations: we suggest to measure how the transverse momenta of hadrons produced in association with a trigger object are balanced as a function of rapidity.

- 1. We pick a trigger object (particle, jet ) within a fixed rapidity interval and a certain small pT.
- 2. Calculate pT recoil as a function of rapidity on the event-by-event basis

$$p_T^{\text{rec}(k)}(\eta) = \sum_{i=1,\dots n, i \neq k} |\vec{p}_{Ti}| \cos \phi_i \Theta\left(\left(\eta - \frac{\Delta \eta}{2}\right) < \eta_i < \left(\eta + \frac{\Delta \eta}{2}\right)\right)$$

3. The average over N events:

$$\langle p_T^{\mathrm{rec}} \rangle (\eta) = \frac{\sum_{k=1}^{N} p_T^{\mathrm{rec}(k)} (\eta)}{N}$$

The total momentum conservation requirement gives, obviously:

$$\int d\eta \left\langle p_T^{\text{rec}} \right\rangle (\eta) = \int d\eta \left\langle p_T^{\text{trig}} \right\rangle (\eta)$$

Suggested variable (a) suppresses contribution of MPI, (b) nonperturbative correlations die out exponentially with  $\Delta \eta$ , pQCD correlations are much wider.

#### The observable and cuts

We consider realistic experimental situation suitable for ATLAS/CMS:

- Charged particles with  $\eta < 2.4$  and  $p_{\rm T} > 250~{\rm MeV}$
- Two trigger objects the both within  $2.0 < \eta^{trig} < 2.4$ :



- 1. single charged particle  $1.5 < p_{\rm T}^{trig} < 2.0 \text{ GeV}$
- 2. charged-particle jet  $(R = 0.4 \text{ in the anti-}k_T)$   $3.0 < p_T^{trig} < 3.5 \text{ GeV}$

#### Results at 13 TeV



- We see that for the both trigger objects we see quite different predictions
- Charge trigger particle: we see strong correlation of particles around the trigger due to parton shower (soft-collinear) radiation around the trigger.
- Jet trigger: we see a dale since we remove the trigger (jet's particles)

## Results at 13 TeV: Pythia tunes



- Charge particle trigger: clearly divides two tunes into two groups (CP2, CUETP8M1) and (CP4, CP5) the main difference between them is usage of LO and NNLO PDF (low gluon X)
- Jet trigger: offers an additional separation power.

## Results energy dependence 7 and 13 TeV: Pythia



- Stronger energy dependence in the case of CUETP8M1 (b=0.252) then CP5 (b= 0.033 almost flat!)  $p_t^{\min} = p_{t,0}^{\min} \left( \frac{\sqrt{s}}{E_0} \right)^b$
- The rest of energy dependence is govern by LO vs NNLO pdf effects

## Results energy dependence 7 and 13 TeV: Herwig++



- Stronger energy dependence in the case of Var1 (ptmin~4GeV) then var2 (ptmin~3GeV)
- Ptmin is the transition to soft MPI which is not showered, for Var1 more soft MPI (less particles in a jet smaller dale)

# Results energy dependence 7 and 13 TeV: Sherpa



• No energy dependence – easy to check by a measurement!

## Results multiplicity dependence at 13 TeV



- We use charged track since for high multiplicity charged jet would
- be "populated" by UE contribution (half of jet energy at nch=100 would be from UE).
- Pythia and Herwig fast increase of the rapidity correlation up to Nch=60 then saturates
- Sherpa continuous increase of the peak along the trigger direction
- Two Herwig predictions could be explain by different transverse proton structure. Peak along trigger higher for lower sigma\_eff.

## Results colour reconnection effects



· Some sensitivity especially in Herwig

## Summary and outlook

- We have introduced a new observable which probes interplay between the soft and hard physics at moderate pT via probing long and short range rapidity correlations of transverse momenta of charged particles/minijets.
- We show that the observable is sensitive to basic mechanisms and components used in the present MC models, such as a suppression of low-pT jet production, parton distribution functions, a transverse geometry of proton, a color reconnection mechanism, and their evolution with collision energy.

Outlook:

- measure it! :)
- it would be also interesting to study such correlations in pA and AA
- extended the method by using as trigger particles two hadrons with a given azimuthal angle difference.

Thank you for your attention!

## Summary and outlook

- We have introduced a new observable which probes interplay between the soft and hard physics at moderate pT via probing long and short range rapidity correlations of transverse momenta of charged particles/minijets.
- We show that the observable is sensitive to basic mechanisms and components used in the present MC models, such as a suppression of low-pT jet production, parton distribution functions, a transverse geometry of proton, a color reconnection mechanism, and their evolution with collision energy.

Outlook:

- measure it! :)
- it would be also interesting to study such correlations in pA and AA
- extended the method by using as trigger particles two hadrons with a given azimuthal angle difference.

## Hard matrix element LO



