

Implications of MPI in ALICE multiplicity measurements

Valentina Zaccolo University and INFN - Trieste

for the ALICE Collaboration

Introduction

At LHC high collision energy \rightarrow significant contributions from hard processes

pQCD precise calculations

Still particle production dominated by **soft-QCD** processes $p_{T} \sim few \text{ GeV}$

- non perturbative phenomenology
- modelling

Introduction

At LHC high collision energy \rightarrow significant contributions from hard processes

pQCD precise calculations

Multiple parton interactions (MPI): more than one hard scattering

A Large Ion Collider Experiment

A Large Ion Collider Experiment

A Large Ion Collider Experiment

Particle multiplicities

- Tuned generators for diffraction arXiv:0909.5156 [hep-ph]
- fit with Negative Binomial Distributions

ALICE Eur. Phys. J. C 77 (2017) 33

Valentina Zaccolo - MPI@LHC 2018

Tuning of models

Multiplicity dependent studies at 13 TeV

Minimum-Bias measurements good performance of models High-multiplicity triggered data collected during 2016 extend the multiplicity reach compared to Minimum Bias

Tuning of models

Multiplicity dependent studies at 13 TeV

6/19

Minimum-Bias measurements good performance of models High-multiplicity triggered data collected during 2016 extend the multiplicity reach compared to Minimum Bias

Tuning of models

Multiplicity dependent studies at 13 TeV

At high multiplicity both EPOS LHC and Pythia 8 are close to data At mid multiplicity Pythia 6 is closer \rightarrow understimation of soft part for newer models?

Colour reconnection is needed to get a good performance

Valentina Zaccolo – MPI@LHC 2018

Centrality slicing effects The Glauber-MC

Stocastically define nucleons position $\rho(r) = \rho_0 \frac{1}{1 + \exp(\frac{r-R}{a})}$

simulate sequence of independent nucleon-nucleon collisions Glauber-MC + fit with NBD

M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243 C. Loizides, J. Kamin, and D. d'Enterria, Phys.Rev. C97 (2018) no.5, 054910 ALICE, arXiv: 1812.01312 [nucl-ex]

Centrality slicing effects The Glauber-MC

ALICE, arXiv: 1812.01312 [nucl-ex]

ALICE Phys. Rev. Lett. 116 (2016) 222302 arXiv:1805.04432 [nucl-ex]

Valentina Zaccolo - MPI@LHC 2018

- Factor 2 rise from peripheral to central
- agreement with pp and p-Pb in peripheral
- the *uptick*: steeper rise: 5% (2%) most central events for Xe-Xe (Pb-Pb) collisions

ALICE Phys. Rev. Lett. 116 (2016) 222302 arXiv:1805.04432 [nucl-ex]

Valentina Zaccolo – MPI@LHC 2018

The *uptick* effect Multiplicities in Xe-Xe and Pb-Pb

The *uptick* originates from:

 multiplicity fluctuations in the tail of the Xe-Xe forward amplitude distribution

The *uptick* effect Multiplicities in Xe-Xe and Pb-Pb

 α MPI

2. the Glauber-MC shows an *uptick* \rightarrow due

number of ancestors (particle sources)

to multiplicity fluctuations at fixed

The *uptick* originates from:

 multiplicity fluctuations in the tail of the Xe-Xe forward amplitude distribution

Tuning of models Multiplicities in Xe-Xe

Almost all models reproduce the *uptick*

→ EPOS-LHC, ASW and KLN show a saturation behaviour

ິ*η* 14/19

Underlying – Event distributions

Soft-hard processes separation Underlying event in pp at 13 TeV

Summed p_{τ} vs. $p_{T,LT}$ 1/(N_{ev}ΔηΔφ)Σ*p* **ALICE** Preliminary Uncertainties: stat.(vertical), syst.(box) Toward and Away regions collect fragmentation products from hard scattering sum-*p*_ density \rightarrow increasing monotonically — pp@13TeV oward region Leading-track - Pythia8(Monash2013) $p_{\perp} > 0.15 \text{ GeV}/c \text{ and } |\eta| < 0.8$ **EPOS-LHC** Δφ Ratio Pvthia8/Data **EPOS-LHC/Data** 13TeV/7TeV TRANSVER 35 5 10 15 20 25 30 p^{leading} (GeV/c)ALI-PREL-140526 Pythia 8 closer to the data for $p_{TLT} > 10 \text{ GeV/}c$ AWA EPOS LHC closer for $p_{TLT} < 10 \text{ GeV/}c$

Valentina Zaccolo - MPI@LHC 2018

40

Soft-hard processes separation Underlying event in pp at 13 TeV

Multiplicity dependence studies

Tuning of models fails Strangeness production in pp, p-Pb and Pb-Pb

17/19

Measurements of strange hadron production important tune for MC models

- enhanced strangeness production
- constant protons over pions not reproduced simultaneously by all models
- DIPSY with color ropes does better

ALICE Nature Physics 13 (2017) 535-539 PLB 728 (2014) 25-38

ALICE

Multiplicity dependence studies D and J/Ψ yields in pp and p-Pb

- Similar D meson and J/Ψ increase with multiplicity
- but faster than diagonal → effect of multiplicity saturation? Interplay between multiplicity fluctuations of individual PI and decreasing of MPI distribution?arXiv:1811.07744

Multiplicity dependence studies D and J/Ψ yields in pp and p-Pb

- Similar D meson and J/Ψ increase with multiplicity
- but faster than diagonal → effect of multiplicity saturation? Interplay between multiplicity fluctuations of individual PI and decreasing of MPI distribution?arXiv:1811.07744

Summary and outlook

- ✓ Charged-particle multiplicity densities and the UE are quite well described by models → improvement needed for AA
- ✓ Multiplicity fluctuations at fixed number of ancestors/MPI influence pA and AA distributions as a function of centrality: *uptick* effect
- ✓ Saturation of N_{MPI} observed in several measurements? UE, D and J/Ψ yields

Effects of MPI fluctuations and saturation are visible in multiplicity measurements!

Summary and outlook

- ✓ Charged-particle multiplicity densities and the UE are quite well described by models → improvement needed for AA
- ✓ Multiplicity fluctuations at fixed number of ancestors/MPI influence pA and AA distributions as a function of centrality: *uptick* effect
- ✓ Saturation of N_{MPI} observed in several measurements? UE, D and J/Ψ yields

Can we further constrain soft QCD using the Underlying Event as a probe? UE: semi-hard + soft interactions

General idea: soft-QCD dynamics tested excluding the hard sector Eur.Phys.J. C76 (2016) no.5, 299 and Phys.Rev. D96 (2017) no.11, 114019

Digression on Initial Conditions Partons and Their Evolution

In Deep Inelastic Scattering: Bjorken-x $x \equiv \frac{Q^2}{2(P \cdot q)} = \frac{Q^2}{s + Q^2 - M^2}$

Parton Area $1/Q^2$

1. Q²-evolution Q² grows 2. Y-evolution *x* decreases at fixed Q² Gluon density: $xg(x,Q^2) \equiv x \frac{dN_g}{dx}$

occupation number increases $n(x,Q^2) \simeq xg(x,Q^2)/Q^2R^2$

formation of Color Glass Condensate arXiv: hep-ph/0303204

Centrality: the Glauber-MC

- 1. Stocastically define nucleons position nuclear density funciton (Fermi's distribution)
- 2. Simulate a nuclear collision
 - sequence of independent binary nucleon-nucleon collisions
 - eikonal approximation
 - same cross section for all collisions
 - hard sphere diameter

$$d < \sqrt{\sigma_{
m NN}^{
m inel}/\pi}.$$
 Hadronic cross section

Glauber-MC + fit with NBD \rightarrow multiplicity distribution

4. Anchor Point

discrepancy point from data and simulation

M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243 C. Loizides, J. Kamin, and D. d'Enterria, Phys.Rev. C97 (2018) no.5, 054910 ALICE, arXiv: 1812.01312 [nucl-ex]

 $\rho(r) = \rho_0 \frac{1}{1 + \exp\left(\frac{r-R}{r}\right)}$

3

How soft is p-Pb? Multiplicities in p-Pb at 8.16 TeV

p-Pb fits with **INEL pp** points **Steeper rise** for AA than for small systems