

Mini-jet model estimate of the effective crosssection for double parton scattering

Giulia Pancheri

INFN Frascati National Laboratories

With A. Grau, S. Pacetti and Y.N. Srivastava

Outline

- The total cross-section: an overview
- The eikonal minijet model with soft gluon resummation (BN model)

– Minijets

- Parton impact parameter from soft gluon resummation => an ansatz for $k_t \sim 0$
- Application to calculation of the effective cross-section
- Comparison with existing estimates

The Bloch-Nordsieck (BN) inspired model for the total cross-section

with A. Grau, R.M. Godbole and Y.N.Srivastava (PRD 1999, 2004)

Eikonal mini-jet model for the total cross-section

 $\bar{n}_{coll}(s) = 2\chi_I = A(b, s; p, PDF, p_{tmin})\sigma_{mini-jet}(s; p_{tmin}, PDF)$

$$\sigma_{total} = 2 \int d^2 \mathbf{b} [1 - e^{-\chi_I(b,s)}]$$

A.Grau,G.P.,Y.N.Srivastava PRD 60 (1999)

- The eikonal function ~ real
- The rise is from pQCD \rightarrow minijets with actual PDFs
- The taming (Froissart bound) of minijet rise is from all order resummation of soft gluons accompanying mini-jet producing collisions

PDF driven eikonal minijet model: Minijets vs total cross-section

The full eikonal in impact parameter space includes also a "soft" component

$$\bar{n}(b,s) = \bar{n}_{soft}(b,s) + \bar{n}_{mini-jets}(b,s) =$$
$$= A_{FF}(b,s)\sigma_{soft}(s) + A_{BN}(b,s)\sigma_{mini-jets}(s)$$

F-transform of the proton form factor $A_{FF}(b) = \frac{\nu^2}{96\pi} (\nu b)^3 K_3(\nu b) \qquad \qquad \nu = 0.71 \, \text{GeV}^2$ $\sigma_{soft}(s) = constant \text{ or slowly} \qquad decreasing$

 $A(b,s;p,PDF,p_{min}) \equiv A_{BN}(b,s)$ BN from resummation of soft gluons \rightarrow into $k_t \approx 0$ (Bloch & Nordsieck inspired)

We model the impact parameter distribution for partons \rightarrow minijets as the Fourier-transform of ISR soft k_t distribution and thus obtain a cut-off at large distances \rightarrow Froissart bound

A.Corsetti, A. Grau, G.P., Y.N. Srivastava PLB 1996

Semi-classical derivation (B. Touschek 1967)

$$d^{2}P(\mathbf{K}_{t}) = \sum_{n_{\mathbf{k}}} P(\{n_{\mathbf{k}}\}) d^{2}\mathbf{K}_{t} \delta^{2}(\mathbf{K}_{t} - \sum_{\mathbf{k}} \mathbf{k}_{t} n_{\mathbf{k}}) = \sum_{n_{\mathbf{k}}} \prod_{\mathbf{k}} \frac{[\bar{n}_{\mathbf{k}}]^{n_{\mathbf{k}}}}{n_{\mathbf{k}}!} e^{-\bar{n}_{\mathbf{k}}} d^{2}\mathbf{K}_{t} \delta^{2}(\mathbf{K}_{t} - \sum_{\mathbf{k}} \mathbf{k}_{t} n_{\mathbf{k}})$$

Exchange Sum with Product \rightarrow

$$d^{2}P(\mathbf{K}_{t}) = \frac{d^{2}\mathbf{K}_{t}}{(2\pi)^{2}} \int d^{2}\mathbf{b}e^{-i\mathbf{K}_{t}\cdot\mathbf{b}}exp\{-\sum_{\mathbf{k}}\bar{n}_{\mathbf{k}}[1-e^{i\mathbf{k}_{t}\cdot\mathbf{b}}]\}$$

$$\diamondsuit \quad \text{Continuum limit} \Rightarrow \quad \frac{d^2 \mathbf{K}_t}{(2\pi)^2} \int d^2 \mathbf{b} e^{-i\mathbf{K}_t \cdot \mathbf{b}} exp\{-\int d^3 \bar{n}_{\mathbf{k}} [1 - e^{i\mathbf{k}_t \cdot \mathbf{b}}] \}$$

$$h(b, q_{max}) = \frac{16}{3\pi} \int_0^{q_{max}} \frac{dk_t}{k_t} \alpha_{eff}(k_t) \ln(\frac{2q_{max}}{k_t}) [1 - J_0(bk_t)]$$

Regularized exponentiated soft gluon spectrum

- → Semiclassical Resummation procedure based on soft gluon Poisson distributions a' la Bloch and Nordsieck+ energy Momentum conservation
- → Needs integrable "effective" quark-gluon coupling constant Nakamura, GP, Srivastava 1984

Implemented for impact parameter Distribution of partons

Corsetti, Grau, GP, Srivastava, PLB 1996

We model the impact parameter distribution for partons \rightarrow minijets as the Fourier-transform of ISR soft k_t distribution and thus obtain a cut-off at large distances \rightarrow Froissart bound

Calculated from single gluon emission kinematics and averaged over densities (PRD 1999)

The BN inspired model for RESUMMING SOFT GLUONS

 Based on a democratic pathway to sum soft quanta – semiclassical approach with the ansatz :

$$\begin{aligned} \alpha_{eff}(k_t \approx 0) \approx k_t^{-2p} \\ \ensuremath{\scale{2pt}}\ensuremath{\scale{$$

$$\rightarrow \quad \sigma_{tot} \lesssim (\ln s)^{1/p}$$

Grau, Godbole, GP, Srivastava, Phys.Lett. B682 (2009)

A(b,s):

Perturbative (resum), non perturbative (FF)

- At large Vs perturbative partons have stronger
 b-fall-off for large b
 than FF
- Below and around ISR (not shown), similar between FF and perturbative

pp Total, elastic and inelastic cross-sections ightarrow 13 TeV updated

MPI 2018 Perugia 10-12 December 2018

$$\begin{split} \textbf{NPS and} & \sigma_{effective} \\ \int (d^2 \mathbf{b}) T(\mathbf{b}) &= 1 \\ \Sigma^{(n)} &\equiv \int (d^2 \mathbf{b}) T^n(\mathbf{b}) \\ \sigma_{eff}^{NPS} &= [\Sigma^{(n)}]^{-1/(n-1)} \end{split} \quad \sigma_{effective}^{DPS} &= [\int d^2 \vec{b} \ T^2(b)]^{-1} \end{split}$$

In eikonal minijet with resummation (BN) model $T(b) \rightarrow A_{resum}(b,s) = \frac{e^{-h(b,s)}}{\int d^2 \vec{b} \ e^{-h(b,s)}}$

$$\sigma_{eff}^{resum} = \frac{2\pi \left[\int bdb \ e^{-h(b,s)}\right]^2}{\int bdb \ e^{-2h(b,s)}}$$

12/11/18

Energy dependence of $\sigma_{effective}$

$$\sigma_{effective} \equiv \sigma_{eff}^{resum-BN}(s) = \sigma_{eff}^{resum-BN}(q_{max}(s))$$
$$q_{max}(s) \equiv \langle q_{max}(s, x_1, x_2) \rangle_{densities} \quad \uparrow \sqrt{s}$$

$$\begin{aligned} h(b,s) \propto q_{max}(s) &\uparrow \sqrt{s} \\ e^{-h(b,s)} \downarrow & \sqrt{s} \\ \sigma_{eff} \downarrow & \sqrt{s} \end{aligned} \\ \sigma_{12} \propto [\sigma_{eff}]^{-1} & \uparrow & \checkmark & S \end{aligned}$$

$$A(b,s) \rightarrow \sigma_{eff}(s)$$
$$A_{mean}(b,s) = \frac{A_{FF}(b)\sigma_{soft}(s) + A_{BN}(b,s)\sigma_{mini-jets}(s)}{\sigma_{soft}(s) + \sigma_{mini-jets}(s)}$$

 $\sigma_{eff}(s)$ Averaging over both semi-hard (from resummation) and non-perturbative partons

$$A_{mean}(b,s) = \frac{A_{FF}(b)\sigma_{soft}(s) + A_{BN}(b,s)\sigma_{mini-jets}(s)}{\sigma_{soft}(s) + \sigma_{mini-jets}(s)}$$

ATLAS compilation 1811.11094

Where to now?

BN Model – toy (?) QCD inspired

- one-channel eikonal formalism
- includes two components:
 - − Soft : no correlation between protons from Proton Form factor → exponential at large b→ e^{-bM}
 - Minijets : correlation \rightarrow s-dependence
 - s-dependence from mini-jets
 - b-dependence from soft gluon resummation
- With parameters inspired by total cross-section description

$$ightarrow$$
 A(b,s) $ightarrow$ $\sigma^{DPS}_{eff}(s)$

 $\sigma_{eff}(s)$ Averaging over both semi-hard (from resummation) and non-perturbative partons

$$A_{mean}(b,s) = \frac{A_{FF}(b)\sigma_{soft}(s) + A_{BN}(b,s)\sigma_{mini-jets}(s)}{\sigma_{soft}(s) + \sigma_{mini-jets}(s)}$$

- Vs ≈ 10 GeV T(b) is dominated by Form Factor type partons
- Vs ≈ 10 TeV T(b,s) is dominated by partons which engage with other partons from the other proton
- $\sigma^{BN}_{eff} \approx 10 mb$ at vs=13 TeV
 - ≈ lower than Strickman,
 - ≈ D'Enterria,
 - ≈ within experimental limit

Spare or irrelevant

Similar procedure leads to K_t resummation in QCD but...

$$h^{(PP)}(b,s) = \frac{4}{3\pi^2} \int_{M^2}^{Q^2} d^2 k_{\perp} [1 - e^{i\mathbf{k}_{\perp} \cdot \mathbf{b}}] \alpha_s(k_{\perp}^2) \frac{\ln(Q^2/k_{\perp}^2)}{k_{\perp}^2}$$

G.Parisi R.Petronzio 1979 With Asymptotic Freedom

Our Proposal (ZPC 1984)

$$M^2 \to 0$$

For integrability And rising potential:

1/2

$$\alpha_{strong}(k_t \leq \Lambda) \rightarrow \alpha_{eff}(k_t) \rightarrow [\frac{\Lambda}{k_t}]^{2p}$$

Total hadronic cross-sections

post-LHC update [before 13 TeV data] from R.M. Godbole, A. Grau, G. Pancheri, Y.N. Srivastava, Eur.Phys.J. C63 (2009) 69-85

pp Total, elastic and inelastic cross-sections \rightarrow 13 TeV

