Measurements of two-particle correlations in e^+e^- collisions at 91 GeV with ALEPH archived data

MPI@LHC 2018
December 11
Perugia, Italy

Anthony Badea, Austin Baty, Yen-Jie Lee, Christopher McGinn, Michael Peters, Jesse Thaler
Massachusetts Institute of Technology

Gian Michele Innocenti
CERN

Paoti Chang, Tzu-An Sheng
National Taiwan University

Marcello Maggi
Università degli Studi di Bari
Introduction

- Origin of ridge in small systems still uncertain
 - Initial state effect (CGC)
 - Flowing mini Quark Gluon Plasma
 - MPIs
 - “Escape” mechanism
- Complications from complexity of hadronic events
 - Hadron structure
 - Gluon ISR
 - Beam remnants
Introduction

- Origin of ridge in small systems still uncertain
 - Initial state effect (CGC)
 - Flowing mini Quark Gluon Plasma
 - MPIs
 - “Escape” mechanism
- Complications from complexity of hadronic events
 - Hadron structure
 - Gluon ISR
 - Beam remnants
- e^+e^- allows us to study high-multiplicity events with well-defined initial-conditions
The ALEPH Detector

- **Hadron Calorimeter**
- **Electromagnetic Calorimeter**
- **Superconducting Magnet (1.5T)**
- **Muon Chamber**
- **Time Projection Chamber**
- **Inner Tracking Chamber**

- LEP1 e^+e^- data at Z pole (91 GeV)
- Data archived as list of energy-flow objects
- Charged particle multiplicities up to 50
 - $p_T > 0.2$ GeV and $|\eta| < 1.74$
- Calorimeters used for event shape variables

![Graph](image)
Thrust Axis definition

Thrust axis:
- Maximizes momentum projection
- Proxy for outgoing quarks from Z decay
- Can we reproduce old ALEPH measurement?
Unfolded Thrust Distribution

- Able to reproduce existing measurements with archived data!
- Most events are dijet-like
- But what about high-multiplicity events?
High Multiplicity $e^+e^-\text{ Event (1)}$

ALEPH Archived Data

Azimuthal View
Anti-k_T $R=0.8$ E Scheme Jet
Thrust Axis
Tracks in Leading Jet
Tracks in Subleading Jet
Tracks in Third Jet
Tracks in Fourth Jet
Other Tracks

39 tracks
$T = 0.98$
High Multiplicity $e^+e^-\text{Event (2)}$

ALEPH Archived Data

- Azimuthal View
- Anti-k_T $R=0.8$ E Scheme Jet
- Thrust Axis
- Tracks in Leading Jet
- Tracks in Subleading Jet
- Tracks in Third Jet
- Tracks in Fourth Jet
- Other Tracks

44 tracks
$T = 0.57$
Beam-axis coordinates

- First repeat analysis done in pp, pA, AA collisions
Beam-axis coordinates

- First repeat analysis done in pp, pA, AA collisions
- Define η, ϕ with respect to the beam pipe
Beam-axis coordinates

- First repeat analysis done in pp, pA, AA collisions
- Define η, ϕ with respect to the beam pipe

- Look for near-side ridge in two-particle correlation
 - Large $\Delta \eta$, small $\Delta \phi$
 - Sensitive to expansion of 'mini-QGP' perpendicular to beam axis
Beam-axis two-particle correlation

Low Multiplicity

PYTHIA6 $e^+e^- \rightarrow$ hadrons, $\sqrt{s} = 91$GeV

$5 \leq N^\text{Offline}_{\text{Trk}} < 10$, $|\cos(\theta_{\text{lab}})| < 0.94$

$0.2 \text{ GeV} < p_T^{\text{lab}}$

Clear jet peak at $(\Delta\eta, \Delta\phi) = (0,0)$

High Multiplicity

PYTHIA6 $e^+e^- \rightarrow$ hadrons, $\sqrt{s} = 91$GeV

$N^\text{Offline}_{\text{Trk}} \geq 35$, $|\cos(\theta_{\text{lab}})| < 0.94$

$0.2 \text{ GeV} < p_T^{\text{lab}}$

Clear jet peak at $(\Delta\eta, \Delta\phi) = (0,0)$
Beam-axis two-particle correlation

- **Low Multiplicity**
 - $\sqrt{s} = 91 \text{ GeV}$
 - $5 \leq N_{\text{trk}}^{\text{Offline}} < 10$
 - $|\cos(\theta_{\text{lab}})| < 0.94$
 - $0.2 \text{ GeV} < p_T^{\text{lab}}$

- **High Multiplicity**
 - $N_{\text{trk}}^{\text{Offline}} \geq 35$
 - $|\cos(\theta_{\text{lab}})| < 0.94$
 - $0.2 \text{ GeV} < p_T^{\text{lab}}$

- **Clear jet peak at** $(\Delta \eta, \Delta \phi) = (0,0)$
- **No clear near-side ridge**
Low Multiplicity

- Project $1.6<|\Delta \eta|<3.2$ into a 1D plot
- Fit data from $0<|\Delta \phi|<\pi/2$ with Fourier series
- Subtract off the 'zero yield at minimum' (ZYAM)
Projection

Low Multiplicity

PYTHIA6 $e^+e^- \rightarrow$ hadrons, $\sqrt{s} = 91$ GeV

$5 \leq N_{\text{Offline}}^{\text{Trik}} < 10$, $|\cos(\theta_{\text{lab}})| < 0.94$

0.2 GeV < p_T^{lab}

Beam coordinates

- Very similar to archived PYTHIA 6.1 predictions
Going to higher multiplicities...

- No ridge observed!
- Agreement with PYTHIA6 is excellent for 10-20 multiplicity bin
- Some discrepancy at large $\Delta \phi$
Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield
Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield
- Find value that contains 95% of our trials
Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield
- Find value that contains 95% of our trials
- Stringent limit for beam-axis analysis
Thrust-axis coordinates

• Maybe beam coordinates are not the best for e^+e^-
Thrust-axis coordinates

- Maybe beam coordinates are not the best for e^+e^-
- Align our coordinates with thrust axis
- Follows direction of color string connecting outgoing quarks
Thrust-axis coordinates

- Maybe beam coordinates are not the best for e^+e^-
 - Align our coordinates with thrust axis
 - Follows direction of color string connecting outgoing quarks

- Sensitive to final-state radiation
- Fragmentation patterns of quarks
- Thrust (coordinates) vary on event-by-event basis!

\[e^+ \quad \text{Thrust Axis} \quad \hat{\eta} \quad e^- \]
Correlation with thrust axis

- Correlation function shape qualitatively similar between pp and e^+e^-
- Many caveats, but interesting to think about mapping:
 - pp beam axis to e^+e^- thrust axis
 - pp forward production to e^+e^- dijet constituents
Correlation with thrust axis

- Narrower away-side peak in high-multiplicity events
- Toy-event studies indicate this could be due to increased multi-jet events
• Projection into $\Delta \phi$ + ZYAM shows data in agreement with PYTHIA 6
• Small hint of near-side ridge, but sensitive to details of thrust reconstruction
 • ZYAM with fit + yield extraction still ongoing
Thrust axis projection $N_{\text{trk}} > 35$

- Projection into $\Delta \phi$ + ZYAM shows data in agreement with PYTHIA 6
- Small hint of near-side ridge, but sensitive to details of thrust reconstruction
- ZYAM with fit + yield extraction still ongoing
Summary

- First two-particle correlation analysis in e^+e^- collisions performed in bins of multiplicity up to ~50

- Beam coordinates:
 - No significant ridge signal observed and confidence limits reported

- Thrust coordinates:
 - No significant difference observed between LEP1 data and PYTHIA6
 - Associated yield calculation still ongoing

- No evidence for a final-state effect causing near-side ridge in the multiplicity ranges probed
 - Important reference for pp, pA, AA collisions

- Data preservation projects are valuable for future scientific collaboration and investigation
Acknowledgement

We would like to thank Roberto Tenchini and Guenther Dissertori from the ALEPH collaboration for the useful comments and suggestions on the use of ALEPH archived data.

We would like to thank Wei Li, Maxime Guilbaud, Wit Busza and Yang-Ting Chen for the useful discussions on the analysis.

The MIT group's work was supported by US DOE-NP
Multiplicity comparison

e^+e^- \rightarrow \text{hadrons, } \sqrt{s} = 91 \text{ GeV}

- ALEPH Archived Data
- Archived PYTHIA 6.1 MC
Thrust vs multiplicity

\[\frac{1}{\sigma} \frac{d\sigma}{dT} \]

- Inclusive \(N_{\text{Trk}}^{\text{Offline}} \)
- \(5 \leq N_{\text{Trk}}^{\text{Offline}} < 10 \)
- \(10 \leq N_{\text{Trk}}^{\text{Offline}} < 20 \)
- \(20 \leq N_{\text{Trk}}^{\text{Offline}} < 30 \)
- \(N_{\text{Trk}}^{\text{Offline}} \geq 30 \)
- \(N_{\text{Trk}}^{\text{Offline}} \geq 35 \)

\(e^+e^- \rightarrow \text{hadrons}, \sqrt{s} = 91 \text{ GeV} \)
- ALEPH Archived Data
- Archived PYTHIA 6.1 MC

Thrust
Pseudodata sets

ALEPH Archived Data
Beam coordinates
5 \leq N_{\text{irr}} < 10

ALEPH Archived Data
Beam coordinates
10 \leq N_{\text{irr}} < 20

\(e^+e^- \rightarrow \text{hadrons, } \sqrt{s}=91 \text{ GeV}\)
Pseudodata sets

$e^+e^- \rightarrow$ hadrons, $\sqrt{s}=91$ GeV

ALEPH Archived Data

Beam coordinates

$20 \leq N_{\text{trk}} < 30$

$30 \leq N_{\text{trk}}$
Beam axis correlation functions

\[\frac{d^2N}{d\eta d\phi} \]

PYTHIA6 \(e^+ e^- \to \) hadrons, \(\sqrt{s} = 91 \text{GeV} \)

10 \(\leq N_{\text{trk}}^{\text{offline}} < 20 \), \(|\cos(\theta_{\text{lab}})| < 0.94 \)

0.2 GeV < \(p_T^{\text{lab}} \)

Beam coordinates