Measurements of two-particle correlations in e⁺e⁻ collisions at 91 GeV with ALEPH archived data

MPI@LHC 2018 December 11 Perugia, Italy

Anthony Badea, <u>Austin Baty</u>, Yen-Jie Lee, Christopher McGinn, Michael Peters, Jesse Thaler *Massachusetts Institute of Technology*

> Gian Michele Innocenti CERN

Paoti Chang, Tzu-An Sheng National Taiwan University

Marcello Maggi Universita degli Studi di Bari

Introduction

- Hadron structure
- Gluon ISR
- Beam remnants

Austin Baty

Introduction

The ALEPH Detector

- LEP1 e⁺e⁻ data at Z pole (91 GeV)
- Data archived as list of energy-flow objects
- Charged particle multiplicities up to 50
 - p_τ>0.2 GeV and |η|<1.74
- Calorimeters used for event shape variables

Thrust Axis definition

Unfolded Thrust Distribution

- Able to reproduce existing measurements with archived data!
- Most events are dijet-like
- But what about high-multiplicity events?

High Multiplicity e⁺e⁻ Event (1)

ALEPH Archived Data

- Azimuthal View Anti- k_T R=0.8 E Scheme Jet
- Thrust Axis
- ------ Tracks in Leading Jet
- —— Tracks in Subleading Jet
- —— Tracks in Third Jet
 - Tracks in Fourth JetOther Tracks

39 tracks T = 0.98

12/11/2018

High Multiplicity e⁺e⁻ Event (2)

ALERH Archived Data

Azimuthal View Anti-k_T R=0.8 E Scheme Jet Thrust Axis Tracks in Leading Jet Tracks in Subleading Jet Tracks in Third Jet Tracks in Fourth Jet Other Tracks

44 tracks T = 0.57

Beam-axis coordinates

Beam-axis coordinates

Beam-axis coordinates

Beam-axis two-particle correlation

• Clear jet peak at $(\Delta \eta, \Delta \phi) = (0,0)$

12/11/2018

Beam-axis two-particle correlation

- Clear jet peak at $(\Delta \eta, \Delta \phi) = (0,0)$
- No clear near-side ridge

Projection

- Project 1.6< $|\Delta\eta|$ <3.2 into a 1D plot
- Fit data from $0 < |\Delta \phi| < \pi/2$ with Fourier series
- Subtract off the 'zero yield at minimum' (ZYAM)

Austin Baty

Projection

• Very similar to archived PYTHIA 6.1 predictions

Austin Baty

12/11/2018

Going to higher multiplicities...

Austin Baty

Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield

Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield
- Find value that contains 95% of our trials

Setting a limit

- Vary data within uncertainties to create pseudodata sets
- Repeat fit + ZYAM, integrate any near-side yield
- Majority of trials have no associated yield
- Find value that contains 95% of our trials
- Stringent limit for beam-axis analysis

Thrust-axis coordinates

Thrust-axis coordinates

Thrust-axis coordinates

Austin Baty

Correlation with thrust axis

- Correlation function shape qualitatively similar between pp and e⁺e⁻
- Many caveats, but interesting to think about mapping:
 - pp beam axis to e⁺e⁻ thrust axis
 - pp forward production to e⁺e⁻ dijet constituents

Correlation with thrust axis

- Narrower away-side peak in high-multiplicity events
- Toy-event studies indicate this could be due to increased multi-jet events

Thrust axis projection N_{trk}>30

- Projection into $\Delta \phi$ + ZYAM shows data in agreement with PYTHIA 6
- Small hint of near-side ridge, but sensitive to details of thrust reconstruction
 - ZYAM with fit + yield extraction still ongoing

Thrust axis projection N_{trk}>35

- Projection into $\Delta \phi$ + ZYAM shows data in agreement with PYTHIA 6
- Small hint of near-side ridge, but sensitive to details of thrust reconstruction
 - ZYAM with fit + yield extraction still ongoing

Summary

 First two-particle correlation analysis in e⁺e⁻ $e^+e^- \rightarrow hadrons, \sqrt{s}=91 \text{ GeV}$ 0.07 collisions performed in bins of multiplicity up to ~50 ALEPH Archived Data 0.06 95% confidence limits 0.05 Associated yield Beam coordinates: Lab coordinates 0.04 No significant ridge signal observed and 0.03 confidence limits reported 0.02 0.01 Thrust coordinates: No significant difference observed between 15 20 25 30 35 LEP1 data and PYTHIA6 MOD PRELIMINARY Associated yield calculation still ongoing ALEPH e⁺e⁻, √s=91GeV 35≤N^{Offline}<999 $|\eta| < 5.0$ No evidence for a final-state effect causing near-0.0<p_<100.0 GeV Thrust Axis side ridge in the multiplicity ranges probed 3.5 ^{dent} N^{trig} dΔηdΔφ • Important reference for pp, pA, AA collisions 1.5 Data preservation projects are valuable for future 4 scientific collaboration and investigation 2 2 $\bigtriangledown_{\emptyset}$ DU -2

12/11/2018

Acknowledgement

We would like to thank **Roberto Tenchini** and **Guenther Dissertori** from the ALEPH collaboration for the useful comments and suggestions on the use of ALEPH archived data.

We would like to thank Wei Li, Maxime Guilbaud, Wit Busza and Yang-Ting Chen for the useful discussions on the analysis.

The MIT group's work was supported by US DOE-NP

Multiplicity comparison

12/11/2018

lii

Thrust vs multiplicity

12/11/2018

Plii

Pseudodata sets

12/11/2018

Mii

Pseudodata sets

Austin Baty

12/11/2018

Miī

Beam axis correlation functions

12/11/2018

