The **Electron Ion Collider** and its implications for high-energy phenomenology <u>Tim Hobbs</u>, Southern Methodist University & CTEQ EIC Center at Jefferson Lab #### proton structure is today becoming a precision field the present moment is in many ways reminiscent of the situation in atomic structure theory in the early 20th Century: Niels with Aage at LANL. Sr STEM simulated image - much as the electronic structure of atomic matter has been mapped to high precision, we are entering an era of 'hadron tomography' - ... this is enshrined in the 2015 Nuclear Science Advisory Committee LRP #### EIC is an essential future tool for hadron tomography and QCD [See Tues. talk by Marco Radici for project status and hadron physics motivations.] The National Academies of SCIENCES ENGINEERING #### THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25171 **Summer 2018** An Assessment of U.S.-Based Electron-Ion Collider Science "In summary, the committee finds a compelling scientific case for such a facility. The science questions that an EIC will answer are central to completing an understanding of atoms as well as being integral to the agenda of nuclear physics today." "Top-level" physics objectives – connecting the bulk properties of hadrons to a parton-level description: - → the origin of nucleon mass and spin in partonic degrees of freedom - → understanding gluonic systems in the high density limit - → imaging the nucleon's multi-dimensional structure ## the capabilities that will allow EIC to address questions in QCD will also drive improvements in HEP - EIC is a very high luminosity "femtoscope" larger compared to HERA luminosities by a factor of 10^2-10^3 - reach in center-of-mass energy, $10 \le \sqrt{s} \le 100\,{\rm GeV}$ \to upgradeable to $\sqrt{s} \le 140\,{\rm GeV}$ - beam polarization of at least ~70% for $e^-, p, \operatorname{light} A$ - as a generic scenario, we consider here the simulated impact of a machine with: $10\,{\rm GeV}\,e^\pm\,{\rm on}\,250\,{\rm GeV}\,p\quad(\sqrt{s}=100\,{\rm GeV})$ ~year of data-taking $$\mathcal{L} = 100\,\mathrm{fb}^{-1}\,e^{-}\,\mathrm{pseudodata}$$ NC/CC $$\mathcal{L} = 10\,\mathrm{fb}^{-1}\,e^{+}\,\mathrm{pseudodata}$$ - → EIC will map the few GeV quark-hadron transition region - → á la HERA, the combination of precision & kinematic coverage provide constraining 'lever arm' on QCD evolution - \rightarrow QCD evolution: (high x, low Q) \leftrightarrow (low x, high Q) 1.2 1.0 0.8 0.6 0.4 0.2 #### → special thanks to **Bo-Ting Wang!** used in this talk, **PDFSENSE**: a tool to quantify and visualize the sensitivity of measured data to the PDFs (or PDFdependent quantities) alternative to computationally costly QCD global analyses; yields a generalized correlation (the `sensitivity') – a proxy for the expected impact in an actual fit ... for many other results (flavors, combinations, moments, cross sections): #### $|S_f|$ for $d/u(x,\mu)$, CT14 HERA2 NNLO as a dedicated machine for hadron tomography, EIC can unravel stubborn issues in nucleon structure, e.g., $d/u(x \approx 1)$ #### [a model discriminator] expected impact, or sensitivity, of EIC determined by examining pseudodata generated by fluctuating about CT14 theory predictions #### the road ahead - the EIC will be a tool for precise hadron tomography - BUT, also of importance to **HEP phenomenology**! - an EIC can be expected to enlighten: - \rightarrow high energy QCD e.g., the gluon and saturation - → Higgs phenomenolgy - → the electroweak sector - → searches for New Physics - → theory of multi-parton interactions - the future: continuing to build the EIC physics case. ..examples... #### QCD at high energies: an EIC and control over the gluon the gluon is crucial to the mass of hadronic bound states, and gg → H is the dominant channel in Higgs production BUT ______ g • while under better control at intermediate x, the collinear gluon PDF is poorly known toward the distribution endpoints, i.e., $g(x,\mu)$ for $x\to 0,\ 1$ can we begin to observe this transition? saturation region **BK/JIMWLK BFKL DGLAP** $ln Q^2$ $\alpha_{\rm S} \ll 1$ Н #### $| S_f |$ for $g(x, \mu)$ CT14 HERA2 NNLO an EIC will provide a sensitive probe to the gluon distribution especially at low x $x \gtrsim 3 \times 10^{-4}$ these constraints arise from high statistics neutral current data on $\sigma_{r, ext{NC}}^{e^{\pm}p}$ 1.2 1.0 8.0 0.6 0.4 0.2 ## An EIC can finally resolve the **NP nucleon charm** question various models predict a nonpertubative (intrinsic) component to the nucleon structure function, but the normalization is small and undetermined $$\langle x \rangle_{\rm IC} = \int_0^1 dx \, x \left[c + \bar{c} \right] (x, m_c^2)$$ $$\lesssim 1 - 2\%$$ the presence of a NP charm component has consequences for heavy quark schemes, masses, and global analyses 10 an EIC will measure very precisely in the \sim few GeV, high x region in which typical NP charm signals are to be expected, à la EMC #### Higgs production is now dominated by PDF and α_s uncertainties - there remains considerable dependence (as large as ~13%) upon PDF paramatrization and running coupling - → the situation is such that precision in Higgs phenom. is significantly PDF-limited Accardi et al., EPJC**76**, 471 (2016). | PDF sets | $\sigma(H)^{ m NNLO}$ (pb) nominal $\alpha_s(M_Z)$ | $\sigma(H)^{ m NNLO}$ (pb)
$\alpha_s(M_Z) = 0.115$ | $\sigma(H)^{ m NNLO}$ (pb)
$\alpha_s(M_Z) = 0.118$ | | | |-----------------------------|--|---|---|--|--| | ABM12 [2] | 39.80 ± 0.84 | 41.62 ± 0.46 | 44.70 ± 0.50 | | | | CJ15 [1] ^a | $42.45^{+0.43}_{-0.18}$ | $39.48^{+0.40}_{-0.17}$ | $42.45^{+0.43}_{-0.18}$ | | | | CT14 [3] ^b | $42.33_{-1.68}^{+1.43}$ | $39.41^{+1.33}_{-1.56}$ (40.10) | $42.33^{+1.43}_{-1.68}$ | | | | HERAPDF2.0 [4] ^c | $42.62^{+0.35}_{-0.43}$ | $39.68^{+0.32}_{-0.40}$ (40.88) | $42.62^{+0.35}_{-0.43}$ | | | | JR14 (dyn) [5] | 38.01 ± 0.34 | 39.34 ± 0.22 | 42.25 ± 0.24 | | | | MMHT14 [6] | $42.36^{+0.56}_{-0.78}$ | $39.43^{+0.53}_{-0.73}$ (40.48) | $42.36^{+0.56}_{-0.78}$ | | | | NNPDF3.0 [7] | 42.59 ± 0.80 | 39.65 ± 0.74
(40.74 ± 0.88) | 42.59 ± 0.80 | | | | PDF4LHC15 [8] | 42.42 ± 0.78 | 39.49 ± 0.73 | 42.42 ± 0.78 | | | $$\sigma_H$$ at NNLO and $\sqrt{s} = 13 \, \text{TeV}; \ \mu_F = \mu_R = m_H$ → enhancing the discovery potential in the Higgs sector will require improving these uncertainties! ### $|S_f| \, { m for} \, \sigma_H, \, 14 \, { m TeV}$ ct14 Hera2 NNLO 10³ $10\,\mathrm{GeV}\,e^{\pm}\, imes\,250\,\mathrm{GeV}\,p$ $-N_{pt} = 295$ highlighted range: $|S_f| > 0.25$ μ [GeV] 10¹ \bullet NC e^-p lacktriangle CC e^+p \blacksquare CC e^-p \bullet NC e^+p 10^{-5} 10^{-2} X #### potentially strong impact on the Higgs sector • the impact of an EIC upon the theoretical predictions for inclusive Higgs production arises from a very broad region of the kinematical space it can access 1.2 1.0 8.0 0.6 0.4 0.2 impact rather closely tied to that of the integrated gluon PDF: #### EIC and an era of (higher) precision electroweak physics (?) • theory predictions for the production of gauge bosons are quite sensitive to the nucleon PDFs: e.g., d(x) at $x \sim 1$, which is poorly constrained $$x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$ $$\frac{d\sigma}{dy} (pp \to W^- X) = \frac{2\pi G_F}{3\sqrt{2}} x_1 x_2 \left(\cos^2 \theta_C \{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)\}\right)$$ $$+ \sin^2 \theta_C \{s(x_1)\bar{u}(x_2) + \bar{u}(x_1)s(x_2)\}$$ ## historically, extractions of $d(x), x \to 1$ have depended on nuclear targets (and corrections!) • in principle, a neutron target would allow the flavor separation needed to access $d(x,Q^2)$ $$F_2^{e^{-n}} \sim x(4d + u)/9$$ $$----vs ----$$ $$F_2^{e^-p} \sim x(4u+d)/9$$ - **BUT**: in the absence of a free neutron target, scattering from nuclei (e.g., the deuteron) is necessary - ightarrow nuclear corrections (Fermi motion) are sizable, especially for large x #### the electroweak sector and **New Physics** searches at EIC if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z' $$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(\frac{C_{1u}}{\bar{u}} \bar{u} \gamma_{\mu} u + \frac{C_{1d}}{\bar{d}} \bar{q} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(\frac{C_{2u}}{\bar{u}} \bar{u} \gamma_{\mu} \gamma_5 u + \frac{C_{2d}}{\bar{d}} \bar{q} \gamma_{\mu} \gamma_5 d \right) \right]$$ $$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W$$ a unique strength of an EIC is its combination of very high precision and **beam polarization**, which allows the observation of **parity-violating helicity asymmetries**: $A^{\mathrm{PV}} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \quad (\mathrm{R/L}: e^- \text{ beam helicities})$ $$A^{\mathrm{PV}} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$ (R/L: e^- beam helicities) selects \(\gamma\)-Z interference diagrams! TJH and Melnitchouk, PRD77, 114023 (2008). $$A^{\text{PV}} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) (Y_1 \ a_1 + Y_3 \ a_3)$$ $$a_1 = \frac{2\sum_q e_q \ C_{1q} \ (q + \bar{q})}{\sum_q e_q^2 \ (q + \bar{q})} \qquad a_3 = \frac{2\sum_q e_q \ C_{2q} \ (q - \bar{q})}{\sum_q e_q^2 \ (q + \bar{q})}$$ #### the electroweak sector and New Physics searches at EIC • if measured to sufficient precision, the quark-level electroweak couplings may be sensitive to an extended EW sector, e.g., Z' $$\mathcal{L}^{\text{PV}} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma^{\mu} \gamma_5 e \left(\frac{C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(\frac{C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \right]$$ $$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W$$ - with sufficient precision, an EIC (which will be statistics-limited in these measurements) can extract $\sin^2 \theta_W$ - this measurement is potentially sensitive to the TeV-scale in a complementary fashion to energy-frontier searches! TJH and Melnitchouk, PRD**77**, 114023 (2008). $$A^{\text{PV}} = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) (Y_1 \ a_1 \ + \ Y_3 \ a_3) \qquad \begin{array}{l} \text{N.B.: extractions are dependent upon knowledge of the PDFs} \\ a_1 = \frac{2\sum_q e_q \ C_{1q} \ (q+\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})} \qquad a_3 = \frac{2\sum_q e_q \ C_{2q} \ (q-\bar{q})}{\sum_q e_q^2 \ (q+\bar{q})} \end{array}$$ #### interactions with multiple partons at EIC: nuclear case #### consider jet production in electron-nucleus vs. electron-nucleon DIS X. Guo, PRD**58**, 114033 (1998). $$\Delta \langle p_T^2 \rangle \equiv \langle p_T^2 \rangle_{eA} - \langle p_T^2 \rangle_{ep}$$ $$\langle p_T^2 \rangle = \int dp_T^2 p_T^2 \frac{d\sigma}{dx_B dQ^2 dp_T^2} / \frac{d\sigma}{dx_B dQ^2}$$ - multi-parton interactions in nuclear scattering: - → multiple scatterings of produced quark with nuclear medium - → qualitatively different dependence on nuclear size predicted at EIC energies - → more phase space for radiation, larger $\Delta \langle p_T^2 angle$ #### Transverse geometry in pp: Hard processes #### Thanks to **Christian Weiss!** - Hard process from parton-parton collision Local in transverse space $p_T^2 \gg (\text{transv. size})^{-2}$ - ullet Cross section as function of pp impact par $$\sigma_{12}(b) = \int d^2 \rho_1 d^2 \rho_2 \, \delta(\boldsymbol{b} - \boldsymbol{\rho}_1 + \boldsymbol{\rho}_2) \times G(x_1, \rho_1) \, G(x_2, \rho_2) \, \sigma_{\text{parton}}$$ → precise GPDs furnished by EIC will be crucial! Calculable from known transverse distributions Integral $\int d^2b$ reproduces inclusive formula Normalized distribu $P_{12}(b) = \sigma_{12}(b)/[\int \sigma_{12}]$ New information available $\begin{array}{c} \text{Model spectator interactions depending on } b \\ \text{Underlying event} \end{array}$ Predict probability of multiple hard processes Dynamical correlations? FSW04 Diffraction: Gap survival probability Determined largely by transverse geometry FHSW 07 #### conclusions... #### ...and the future. - the commisioning and operation of an EIC is now the priority of the US nuclear and hadronic physics communities - → the dedicated aim of this effort will be the resolution of longstanding issues in QCD, and the precise determination of the nucleon's multi-dimensional structure - → the impact of this work will **NOT** be relegated purely to hadronic/nuclear physics! #### rather, the expected impact upon high energy physics is substantial → controlling SM backgrounds; BSM searches; CGC; MPIs; ... • exploring the physics implications of EIC (including in HEP) requires a **community effort**, esp. to optimize the output of the eventual program ... many opportunities to get involved. supplementary material the goal is to quantify the strength of the constraints placed on a particular set of PDFs by both individual and aggregated measurements without direct fitting • for single-particle hadroproduction of gauge bosons at, e.g., LHC, factorization gives $$\sigma(AB \to W/Z + X) = \sum_{n} \alpha_s^n(\mu_R^2) \sum_{a,b} \int dx_a dx_b$$ $$\times f_{a/A}(x_a, \mu^2) \,\hat{\sigma}_{ab \to W/Z + X}^{(n)}(\hat{s}, \mu^2, \mu_R^2) \,f_{b/B}(x_b, \mu^2)$$ PDFs determined by fits to data; e.g., "CT14H2" pQCD matrix elements – specified by theoretical formalism in a given fit • *idea*: study the statistical <u>correlation</u> between PDFs and the quality of the fit at a measured data point(s); fit quality encoded in a (Theory) – (shifted Data) *residual*: $$r_i(\vec{a}) = \frac{1}{s_i} \left(T_i(\vec{a}) - D_{i,sh}(\vec{a}) \right)$$ s_i : uncorrelated uncert. $\vec{a}: PDF$ parameters #### a brief statistical aside, i the CTEQ-TEA global analysis relies on the Hessian formalism for its error treatment $$\chi_E^2(\vec{a}) = \sum_{i=1}^{N_{pt}} r_i^2(\vec{a}) + \sum_{\alpha=1}^{N_{\lambda}} \overline{\lambda}_{\alpha}^2(\vec{a}) \qquad \qquad \text{nuisance parameters to handle correlated errors}$$ $$r_i(\vec{a}) = \frac{1}{s_i} \left(T_i(\vec{a}) - D_{i,sh}(\vec{a}) \right)$$ these result in systematic shifts to data central values: $$D_i \to D_{i,sh}(\vec{a}) = D_i - \sum_{\alpha=1}^{N_{\lambda}} \beta_{i\alpha} \overline{\lambda}_{\alpha}(\vec{a})$$ • a 56-dimensional parametric basis \vec{a} is obtained by diagonalizing the Hessian matrix H determined from χ^2 (following a 28-parameter fit) $$\delta_{i,l}^{\pm} \equiv \left(r_i(\vec{a}_l^{\pm}) - r_i(\vec{a}_0) \right) / \langle r_0 \rangle_E$$ where $$\langle r_0 angle_E \equiv \sqrt{ rac{1}{N_{pt}} \sum_{i=1}^{N_{pt}} r_i^2(ec{a}_0)}$$ #### a brief statistical aside, ii • ... but how does the behavior of these residuals relate to the fitted PDFs and their uncertainties? for example, how does the PDF uncertainty (at specific x, μ) correlate with the residual associated with a theoretical prediction at the same x, μ ? examine the Pearson correlation over the 56-member PDF error set between a PDF of given flavor and the residual [X,Y] are exactly (anti-)correlated at the far (right) left above. • we may then evaluate correlations between arbitrary PDF-derived quantities over the ensemble of error sets ([X,Y] may be PDFs, cross sections, residuals,...): $$Corr[X, Y] = \frac{1}{4\Delta X \Delta Y} \sum_{j=1}^{N} (X_j^+ - X_j^-)(Y_j^+ - Y_j^-) \qquad \Delta X = \frac{1}{2} \sqrt{\sum_{j=1}^{N} (X_j^+ - X_j^-)^2}$$ #### Correlations carry useful, but limited information **CTEQ6.6** [arXiv:0802.0007]: $\cos \varphi > 0.7$ shows that the ratio σ_W/σ_Z at the LHC must be sensitive to the strange PDF s(x,Q) $\cos \varphi \approx \pm 1$ suggests that a measurement of X may impose tight constraints on Y But, Corr[X,Y] between theory cross sections *X* and *Y* does not tell us about experimental uncertainties ### Correlation C_f and sensitivity S_f The relation of data point i on the PDF dependence of f can be estimated by: • $C_f \equiv \text{Corr}[\rho_i(\vec{a})), f(\vec{a})] = \cos \varphi$ $\vec{\rho}_i \equiv \vec{\nabla} r_i / \langle r_0 \rangle_E$ -- gradient of r_i normalized to the r.m.s. average residual in expt E; $$\left(\vec{\nabla}r_i\right)_k = \left(r_i(\vec{a}_k^+) - r_i(\vec{a}_k^-)\right)/2$$ $$Corr[X, Y] = \frac{1}{4\Delta X \Delta Y} \sum_{i=1}^{N} (X_j^+ - X_j^-)(Y_j^+ - Y_j^-)$$ C_f is **independent** of the experimental and PDF uncertainties. In the figures, take $|C_f| \gtrsim 0.7$ to indicate a large correlation. • $$S_f \equiv |\vec{\rho}_i| cos \varphi = C_f \frac{\Delta r_i}{\langle r_0 \rangle_E}$$ -- projection of $\vec{\rho}_i(\vec{a})$ on $\vec{\nabla} f$ S_f is proportional to $\cos\varphi$ and the ratio of the PDF uncertainty to the experimental uncertainty. We can sum $|S_f|$. In the figures, take $|S_f| > 0.25$ to be significant. #### 2nd aside: **kinematical matchings** residual-PDF correlations and sensitivities are evaluated at parton-level kinematics determined according to leading-order matchings with physical scales in measurements deeply-inelastic scattering: $$\mu_i \approx Q|_i, \ x_i \approx x_B|_i$$ x_i : parton mom. fraction μ_i : factorization scale hadron-hadron collisions: $$AB \to CX$$ $$\mu_i \approx Q|_i, \ x_i^{\pm} \approx \left. \frac{Q}{\sqrt{s}} \exp(\pm y_C) \right|_i$$ single-inclusive jet production: $$Q = 2p_{Tj}, \ y_C = y_j$$ $$tar{t}$$ pair production: $$t ar t$$ pair production: $Q = m_{t ar t}, \ y_C = y_{t ar t}$ etc... $$d\sigma/dp_T^Z$$ measurements: $$Q = \sqrt{(p_T^Z)^2 + (M_Z)^2}, \ y_C = y_Z$$ #### Sensitivity ranking tables ... to assess the impact of separate experiments | | | Rankings, CT14 HERA2 NNLO PDFs | | | | | | | | | | | | | | | |-----|----------------|--------------------------------|------------------|----------------------------------|-----------------------|-----------------------------------|---------------------|-----------------------------------|--------------|---------------------------|-----------|---------------------------|-----------|---------------------------|------------|---------------------------| | No. | Expt. | N_{pt} | $\sum_f S_f^E $ | $\langle \sum_f S_f^E \rangle$ | $ S_{\bar{d}}^{E} $ | $\langle S^E_{\bar{d}} \rangle$ | $ S_{\bar{u}}^{E} $ | $\langle S_{\bar{u}}^E \rangle$ | $ S_g^E $ | $\langle S_g^E \rangle$ | $ S_u^E $ | $\langle S_u^E \rangle$ | $ S_d^E $ | $\langle S_d^E \rangle$ | $ S_s^E $ | $\langle S_s^E \rangle$ | 1 | HERAI+II'15 | 1120. | 620. | 0.0922 | В | | \mathbf{A} | 3 | \mathbf{A} | 3 | ${f A}$ | 3 | В | | $^{\rm C}$ | | | 2 | CCFR-F3'97 | 86 | 218. | 0.423 | С | 1 | С | 1 | | 3 | В | 1 | С | 2 | | | | 3 | BCDMSp'89 | 337 | 184. | 0.0908 | | | С | | С | | В | 3 | С | | | | | 4 | NMCrat'97 | 123 | 169. | 0.229 | С | 2 | | | | | С | 2 | В | 2 | | | | 5 | BCDMSd'90 | 250 | 141. | 0.0939 | С | | | | С | 3 | С | 3 | С | 3 | | | | 6 | CDHSW-F3'91 | 96 | 115. | 0.199 | С | 2 | С | 2 | | 3 | С | 2 | С | 3 | | | | 7 | E605'91 | 119 | 113. | 0.158 | С | 2 | С | 2 | | | | 3 | | | | | | 8 | E866pp'03 | 184 | 103. | 0.0935 | | 3 | С | 3 | | | С | 3 | | | | | | 9 | CCFR-F2'01 | 69 | 89.1 | 0.215 | | 3 | | 3 | С | 2 | | 3 | | 2 | | 3 | | 10 | CMS8jets'17 | 185 | 87.6 | 0.0789 | | | | | С | 3 | | | | | | | | 11 | CDHSW-F2'91 | 85 | 82.4 | 0.162 | | 3 | | 3 | | 3 | | 3 | С | 3 | | | | 12 | CMS7jets'13 | 133 | 63.8 | 0.0799 | | | | | С | 3 | | | | | | | | 13 | NuTeV-nu'06 | 38 | 58.9 | 0.259 | | 3 | | 3 | | | | 3 | | 3 | С | 1 | | 14 | CMS7jets'14 | 158 | 57.5 | 0.0606 | | | | | С | 3 | | | | | | | | 15 | CCFR SI nub'01 | 38 | 49.4 | 0.217 | | 3 | | 3 | | | | 3 | | 3 | С | 1 | | 16 | ATLAS7jets'15 | 140 | 48.2 | 0.0574 | | | | | | 3 | | | | | | | | 17 | CCFR SI nu'01 | 40 | 48. | 0.2 | | 3 | | 3 | | , | | . 3 | | . 3 | С | 1 | Experiments are listed in the descending order of the summed sensitivities to $\bar{d}, \bar{u}, g, u, d, s$ For each flavor, A and 1 indicate the strongest total sensitivity and strongest sensitivity per point C and 3 indicate marginal sensitivities; low sensitivities are not shown #### PDFSense predictions can be validated against actual fits - PDFSense successfully predicts the highest impact data sets before fitting, as shown in this illustration for the large x PDF ratio $\,d/u\,$ - Lagrange Multiplier scans provide an independent test of which datasets most drive the global fit in connection with specific PDFs HERA and fixed-target (BCDMS, NMC) data are dominant!