

Summary and conclusions of HI session

Valentina Zaccolo University and INFN – Trieste

Experimental results

HI and fixed target with LHCb

Valentina Zaccolo - MPI@LHC 2018

LHCb has unique forward kinematics as heavy-ion collider and in fixed target mode → System for Measuring Overlap with Gas (SMOG) served as a "pseudo-target"

First direct determination of the antiproton production cross-section in pHe collisions

HI and fixed target with LHCb

LHCb has unique forward kinematics as heavy-ion collider and in fixed target mode → System for Measuring Overlap with Gas (SMOG) served as a "pseudo-target"

No strong differences are observed between pHe data and the theoretical predictions that do not include any intrinsic charm contribution

 \rightarrow No evidence for a substantial intrinsic charm content of the nucleon is found

MPI in ALICE multiplicity measurements

ALICE

Multiplicity fluctuations at fixed number of ancestors/MPI influence $pA_{PPI, s_{NN}}^{Xe-Xe, s_N} = 5.44 \text{TeV}$ distributions as a function of centrality: uptick effect RHIC (PHOBOS) $p_{P, s_{NN}}^{Ye-Xe, s_N} = 5.02 \text{TeV} (\times 1.02)$

HF measurements with ALICE

Heavy-flavor quarks (charm and beauty) mainly produced in hard scattering \rightarrow can probe the entire evolution of the QGP

p-Pb initial cold nuclear matter state effects on D jets are small

→ charm jet quenching in lead-lead collisions should not be influenced by such effects

Valentina Zaccolo – MPI@LHC 2018

HF measurements with ALICE

Heavy-flavor quarks (charm and beauty) mainly produced in hard scattering \rightarrow can probe the entire evolution of the QGP

Flow-like effects in the HF sector studied in high-multiplicity p-Pb collisions → Collective effects? Initial or final state cold nuclear matter effects? Color reconnections?

HF and quarkonia with PHENIX and STAR $v_2^{c}(c \rightarrow e)$ Charm $v_2^{b}(b \rightarrow e)$ Bottom

HF and quarkonia with PHENIX and STAR

Rachid Nouicer

Direct photon production at PHENIX

The γ yields differ by a factor 10 at low p_{T} from pp to AA

 \rightarrow gap partially filled by p-Au \rightarrow pp high multiplicity points can help

Theory models

Soft QCD from ee to AA with PYTHIA

Developments:

- String-string interactions → vortex lines (can reproduce pp ridge structure and strangeness enhancement)
- Angantyr extension for pA and AA: currently no QGP effects (ropes, shoving) in AA but can reproduce global features

TCM of hadron production

Flow harmonic coefficients

10/12

Experimental data cannot bring to a conclusion on whether it is an initial state or a final state effect

Proton structure definition is crucial

Future projects

Electron Ion Collider

Addresses open questions on structure of nucleons and nuclei:

- spin of nucleons and nuclei: quarks contribute to a fraction of proton spin
- tomography in momentum and spatial space
- saturation: gluon occupancy amplified for any obcupas

Rep

Tentative summary

Physics of Heavy lons is active, rich and still to develop!

- small systems like pp and p-Pb (d-Au) were planned as control systems but show instead interesting features to be studied/understood more (initial/final state effects? cold/hot nuclear matter effects?)
- MPI effects are visible in global observables in AA and pA
- > What are the HI measurements which are more influenced by MPI?

Look forward to new (more precise) experimental results, to new small collision systems... in general to more interaction among experimental and theoretical community!