Cosmology 2018

Dynamical models of dwarf spheroidal galaxies: application to Fornax

Raffaele $Pascale^1$

¹Department of Physics and Astronomy, University of Bologna

 $\begin{array}{ccc} \mbox{Collaborators:} & \mbox{Lorenzo Posti}^2, \\ & \mbox{Carlo Nipoti}^1, \\ & \mbox{James Binney}^3 \end{array}$

²Kapteyn Astronomical Institute, University of Groningen ³Rudolf Peierls Centre for Theoretical Physics, Oxford

Distribution function based models of the Fornax dSph

Summary

Introductions:

- Dwarf spheroidal galaxies (dSphs)
- Dynamical modeling methods
- Action-based distribution functions (DFs)

Application to the Fornax dSph:

- The samples
- Best model: a cored dark halo
- Results
- Conclusions

Dwarf Spheroidal Galaxies

Sculptor

credits: ESO/Digitized Sky Survey 2

Dwarf spheroidal galaxies (dSphs):

- Nearby systems (resolved sellar pop.s)
- Pressure supported, flattened
- Dark-matter dominated (equilibrium ?)

References:

Battaglia et al. (2013), Irwin & Hatzidimitriou (1995), Aaronson (1983)

Dwarf Spheroidal Galaxies

Perfect laboratories to:

- probe ACDM cosmology on the smallest scales
- study dark-matter properties in a convenient environment
- search for dark-matter indirect detection

References: Battaglia et al. (2013), Irwin & Hatzidimitriou (1995), Walker et al. (2009)

4/22

Distribution function based models of the Fornax dSph

	Jeans	Schwarzschild	DF
Analytical DF?			
Computational cheap?			
Physical model?			

Distribution Function (DF) = probability at any given point of the phase-space

$$f = f(\mathbf{x}, \mathbf{v})$$

What's needed:

- Steady-state
- Equilibrium (no tides, no recent interactions)
- CBE satisfied

	Jeans	Schwarzschild	\mathbf{DF}
Analytical DF?	X		
Computational cheap?	1		
Physical model?	X		

Jeans Analysis

 $\Sigma(R)$ Assume a reasonable fit to the Φ light profile, a potential and an anisotropy distribution $\beta(r)$

Integrate Jeans Equations

	Jeans	Schwarzschild	\mathbf{DF}
Analytical DF?	X	X	
Computational cheap?	1	X	
Physical model?	X		

Schwarzschild techniques:

Libraries of numerical orbits are weighted to get a good match with Observed data

	Jeans	Schwarzschild	DF
Analytical DF?	X	X	~
Computational cheap?	\checkmark	X	~
Physical model?	X		1

DF based methods:

Assume an analytic expression for the DF

 $f(E,L) f(E) \\ f^{z}(T)$

Compute all the relevant model properties

 $\vec{\boldsymbol{v}}_{\mathrm{L}}^{(\boldsymbol{x})}(\boldsymbol{x}_{\mathrm{L}},\boldsymbol{v}_{\mathrm{los}})$

Get physically consistent models

Distribution function based models of the Fornax dSph

DF depending on actions

Life-changing questions. How to write any reasonable DF?

 $f = f(\mathbf{x}, \mathbf{v})$

Jeans Theorems! Adopt integrals of motion as argument of the DF

• Which integrals? The actions $\left(J_{r}, J_{\phi}, J_{z}\right)$ and why?
 Flattening
 Rotation
 Multi-component systems

Model set-up and comparison to data

Distribution function based models of the Fornax dSph

Fornax samples

Data sets:

- Photometric sample Projected stellar number density profile (Battaglia et al. 2006)
- Kinematic sample

 measures of star
 velocities along line-of sight (Battaglia et al.
 2006, Walker et al. 2009)
- Milky Way LOSVD model (Robin et al. 2004)

Distribution function based models of the Fornax dSph

Fornax samples

Kinematic Sample

- Joined sample of Battaglia et al. 2006 and Walker et al. 2009
- Cross-matched
- Corrected for system velocity, extent of Fornax on the plane of the sky

Raffaele Pascale

• Binaries accounted

Fornax: a cored dark halo

$$\boldsymbol{f}_{\mathrm{tot}}(\boldsymbol{J}) \!=\! \boldsymbol{f}_{\star}(\boldsymbol{J}) \!+\! \boldsymbol{f}_{\mathrm{dm}}(\boldsymbol{J})$$

Stars DF $f_{\star}(J)$: designed to reproduce anisotropic stellar components, with truncation of adjustable steepness in the outer parts and cored in inner parts (Pascale et al. 2018b)

DM DF $f_{dm}(J)$: designed to reproduce **NFW-like** models with the optional presence of a **core of variable size** in the inner parts of the density distribution (Posti et al. 2015, Cole & Binney 2017)

Family	$r_{\rm c}/[{\rm kpc}]$	(Probability)
MFL	_	4.7×10^{-41}
NFW halo	_	3.4×10^{-31}
Cored halo 1	0.34	1.2×10^{-8}
Cored halo 2	0.87	0.52
Cored halo 3	1.03	1

Five scenarios (families) have been considered:

- 3 cored halo families
- NFW family
- Mass-follows-light family

Best Model: Cored halo

Fornax: a cored dark halo

Family	$r_{\rm c}/[{\rm kpc}]$	(Probability)
MFL	_	4.7×10^{-41}
NFW halo	_	3.4×10^{-31}
Cored halo 1	0.34	1.2×10^{-8}
Cored halo 2	0.87	0.52
Cored halo 3	1.03	1

Five scenarios (families) have been considered:

3 cored halo families NFW family Mass-follows-light family

Best Model: Cored halo

Fornax: a cored dark halo

15/22

Distribution function based models of the Fornax dSph

Fornax: Results

- Dark matter dominates over stars over the full radial extent of Fornax
- Largest core among the family explored. Further investigations show that $r_{\rm c\,,dm}\!\leqslant\!4\,{\rm kpc}$
- NFW and MFL hypothesis rejected with high statistical significance

Distribution function based models of the Fornax dSph

Fornax: Results

- Dark matter dominates over stars over the full radial extent of Fornax
- Largest core among the possible models explored
- NFW and MFL hypothesis rejected with high statistical significance
- Anisotropy independent mass estimate $M_{\rm dyn}(r \simeq 1.7 R_{\rm e}) \simeq 1.38 \times 10^8 M_{\odot}$
- Isotropic velocity distribution

Fornax: indirect detection

Perfect targets for dark matter **indirect detection**

$$J(\theta) = \frac{2\pi}{d^2} \int_{-\infty}^{+\infty} \mathrm{d} z \int_{0}^{\theta d} \rho_{\mathrm{dm}}^2 R \,\mathrm{d} R$$

D-factor: proportional to the γ -ray flux due to decay $D(\theta) = \frac{2\pi}{d^2} \int_{-\infty}^{+\infty} dz \int_{0}^{\theta d} \rho_{dm} R dR$

The higher the better!

Fornax: indirect detection

Perfect targets for dark matter **indirect detection**

$$J(\theta) = \frac{2\pi}{d^2} \int_{-\infty}^{+\infty} \mathrm{d} z \int_{0}^{\theta d} \rho_{\mathrm{dm}}^2 R \,\mathrm{d} R$$

D-factor: proportional to the \mathcal{Y} -ray flux due to decay $D(\theta) = \frac{2\pi}{d^2} \int_{-\infty}^{+\infty} \mathrm{d} z \int_{0}^{\theta d} \rho_{\mathrm{dm}} R \,\mathrm{d} R$

Not so much a bad candidate!

Space for other dSphs?

20/22

Distribution function based models of the Fornax dSph

Space for other dSphs?

Positive in testing other dSphs

Appealing in the multicomponent modeling when separate stellar components are available (Pascale 2018b, in prep)

21/22

Distribution function based models of the Fornax dSph

Conclusions

- First dynamical models based on DF of the Fornax dSph.
- Improved data-model comparison, accounting for:
 - Individual stars basis (no binning)
 - Physical LOSVD
 - MW contaminants
- Best model: cored dark-matter halo, isotropic stellar distribution
- Accurate measurements of J-D factors
- Test to other dSphs, ok

Distribution function based models of the Fornax dSph

Auxiliary Slides

Performances of other models

A1/A3

Distribution function based models of the Fornax dSph

Performances of other models

Distribution function based models of the Fornax dSph

A2/A3

Performances of other models

Distribution function based models of the Fornax dSph

Mock test: samples

Application to **mock** galaxy:

- Stellar component embedded in a dominant NFW halo
- **Isotropic** stellar velocity distribution
- Photometric and kinematic samples similar to the Fornax samples

Mock test: results

Distribution function based models of the Fornax dSph

Mock test: results

Distribution function based models of the Fornax dSph

DF for dSphs and GCs

$$\begin{split} M_{\star}f_{\star}(\boldsymbol{J}) &= M_{\star}f_{0} \exp\left[-\left(\frac{k(\boldsymbol{J})}{J_{0,\star}}\right)^{\alpha}\right]\\ k(\boldsymbol{J}) &= J_{r} + \eta\left(\left|J_{\phi}\right| + J_{z}\right) = J_{r} + \eta L\\ f_{0} &= \frac{\eta^{2}\alpha}{\left(2\pi J_{0,\star}\right)^{3}\Gamma(3/\alpha)} \end{split}$$

Free parameters:

- (α, η) : dimensionless parameters regulating the structural and kinematic model properties
- M_{\star} : total mass

C1/C3

DF for dSphs and GCs

C3/C3

Distribution function based models of the Fornax dSph

About the best model

 $p_{member} < 0.9 \ (185 \ stars)$

Distribution function based models of the Fornax dSph

About the best model

Sample A: whole crossmatched stars

Sample B: crossmatched stars without binaries

LOSVDs computed in two radial bins (inner and outer Fornax)

Bins have approximately the same number of stars

Flattened models

Distribution function based models of the Fornax dSph