

Shedding light on modified gravity theories using voids

Christopher Davies, Baojiu Li (Durham), Enrique Paillas, Joaquin Armijo, Nelson Padilla (Santiago), Sownak Bose (Harvard), Yan-Chuan Cai (Edinburgh),

Cosmology 2018 Dubrovnik, Croatia 22 October 2018

Marius Cautun

MC+, MNRAS 476, 2018 Davies, MC+, MNRAS 480, 2018 Paillas, MC+, arXiv: 1810.02864

Amanullah+ (2010)

Marius Cautun

Overview

 $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = -8\pi G T_{\mu\nu}$

General Relativity + dark energy:

$$\left|R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = -8\pi GT_{\mu\nu} + \Lambda g_{\mu\nu}\right|$$

Modify General Relativity:

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} - \Lambda g_{\mu\nu} = -8\pi G T_{\mu\nu}$

Voids as probes of modified gravity models

- General Relativity, i.e. Modified Gravity (MG) models
- rise to fifth forces
- density regions (*screening mechanisms*)
- f(R) (Hu & Sawicki 2007) and nDGP (Dvali+ 2000)

Marius Cautun

The accelerated expansion of the Universe can be explained by modifying

• Such theories have additional degrees of freedom (e.g. scalar fields) that give

Due to stringent solar system constraints, such forces must vanish in high

• These fifth forces can attain maximum values in low density regions, i.e. voids

Many models have similar phenomenology, so I will focus on two such models:

Halo mass function in MG models

f(R) gravity models

Marius Cautun

nDGP gravity models

Distribution of galaxies as realistic as possible:

 HOD galaxies with number density and 2-pt correlation function as in SDSS CMASS sample.

Match the 2-pt correlation function of • galaxies in GR and MG models.

Marius Cautun

Tracer field

Same galaxy clustering

Marius Cautun

MC+(2018)

Probing modified gravity with voids

6

Void identification

Distribution of galaxies

Marius Cautun

Distribution of voids

Watershed void finder (Platen + 2007)

Probing modified gravity with voids

7

Distribution of void sizes

Marius Cautun

MC+(2018)

Galaxy density profiles

Marius Cautun

MC+(2018)

Mass density profiles

Marius Cautun

MC+(2018)

Why more underdone voids?

Marius Cautun

Paillas + (2018)

11

Gravitational lensing

Marius Cautun

Gravitational lensing

Convergence

Shear

Marius Cautun

 proportional to the line-of-sight projected density

- change in the shape of background galaxies
- proportional to the line-of-sight projected density

$$\gamma_t = \overline{\kappa}(< r) - \kappa(r)$$

Marius Cautun

Tangential shear profiles

Why is weak lensing by voids so weak?

The lensing signal depends on the projected line-of-sight density

line of sight

Why is weak lensing by voids so weak?

 $\gamma_t(r) = \frac{\Delta \Sigma(r)}{\Sigma_c} = \frac{\overline{\Sigma}(<\!r) - \Sigma(r)}{\Sigma_c}$

- The lensing signal depends on the projected line-of-sight density
- High density regions on the void edge and also along the line of sight partially compensate the emptiness of the void

line of sight

Why is weak lensing by voids so weak?

 $\gamma_t(r) = \frac{\Delta \Sigma(r)}{\Sigma_c} = \frac{\overline{\Sigma}(<\!r) - \Sigma(r)}{\Sigma_c}$

- The lensing signal depends on the projected line-of-sight density
- High density regions on the void edge and also along the line of sight partially compensate the emptiness of the void
- Choose line of sights through voids that do not overlap with high density regions —> line-of-sight under densities

line of sight

Voids in the projected galaxy distribution

Tunnels (MC + 2018)

Marius Cautun

3D versus 2D void finders

MC+(2018)

Void lensing profiles

Marius Cautun

MC+(2018)

S/N for distinguishing models

nDGP

Predictions for future surveys including shape noise:

LSST (filled symbols)

Euclid (empty symbols)

 10^{2}

 101

 10^{0}

f(R)

Paillas + (2018)

f(R) versus nDGP gravity

Marius Cautun

Marius Cautun

VOLES — voids from weak lensing

Convergence map

= (weighted) line-of-sight projected density

Marius Cautun

Davies + (2018)

Marius Cautun

Davies + (2018)

Shear profile of VOLES

Marius Cautun

Davies + (2018)

Testing modified gravity theories using VOLES

Marius Cautun

Davies + in prep

- these models is maximal inside voids.
- When matching the tracer distribution between GR and MG models, void hence weak lensing by void.
- opens a new avenue for cosmological tests.

Conclusions

Voids are ideal probes of modified gravity theories since usually the fifth force in

The fifth force enhances the evacuation of matter from voids -> emptier voids.

statistics are the same except for the matter density profile (and RSD), and

· Voids identified in the weak lensing maps (VOLES) represent a new method of selecting the most underdense (line-of-sight) regions of the Universe and hence

