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The cosmic-ray “multi-messenger” spectrum

I Non-thermal: Almost a perfect power-law

over 11 energy decades.

I Evidence of departures from a perfect

power-law: the knee and ankle features.

I Spectrum cut-o↵ at & 10
20

eV.

I Particles observed at energy higher than

any terrestrial laboratory.

I Direct measurements (at low-E) versus

air-cascade reconstructions (at high-E).

I Composition at R⇠10 GV:

⇠ 99.2% are nuclei

⇠ 84% protons

⇠ 15% He

⇠ 1% heavier nuclei

⇠ 0.7% are electrons

⇠ 0.1% are anti-matter particles

I None of them can be unambiguously

explained as secondary Dark Matter

product! (as far as we know)
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Cosmic Ray factories in our Galaxy: SNR

Chandra’s image of SN 1006. In blue

high-energy electrons emission.

I Energetically dominant component of
the CRs at about a GeV/nucleon are
certainly Galactic (Fermi, 1949)

I With an energy density of
✏CR ⇠1 eV/cm3, CRs are in rough
equipartition with magnetic fields, gas,
photon fields.

I SN explosions can sustain the galactic
CR population:

LCR =
✏CRVMW

⌧esc
⇠ 0.1÷ 0.5 LSN

I DSA mechanism predicts a power-law
injection spectrum / p

�2
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Cosmic Ray factories in our Galaxy: sources

Gaggero+2013, PRL; Cholis+2018, PRD

I Particle acceleration at the highest speed shocks in nature (104 < � < 107)

I Cosmic Rays: only sources showing direct evidence for PeV particles

I Anti-matter storage rooms: as many positrons as electrons
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Cosmic Rays in our Galaxy: star formation and ionization

Padovani+2009 (A&A), Gabici+2010 (A&A), Ivlev+2018 (ApJ)

I Voyager’s launched in 1977 has been measuring the CRs outside the heliosphere

I These sub-GeV particles drives star-formation being able to penetrate molecular
clouds.
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The di↵usive paradigm of galactic CRs
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The ratio of boron and carbon fluxes provides us with the best estimates of the
time spent by CRs in the Galaxy before escaping.
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The di↵usive paradigm of galactic CRs

I The grammage traversed by CRs is related to the escape time:

X (E ) = n̄µv⌧esc(E )

I if we assume that the gas is concentrated in a thin disc, h, and the di↵usive
halo extends to a height H, the mean density

n̄ = nd
h

H
⇠ 0.1

✓
H

4 kpc

◆�1

cm�3

I the typical escape time is

⌧esc ⇠ 100

✓
H

4 kpc

◆
Myr
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Cosmic-ray clocks

PAMELA Collaboration, 2018, ApJ, 862, 2
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The observed fraction of unstable isotopes which live long enough, e.g. Be10

(⌧ ⇠ 1.4 Myr), can be used to derive H & 2 kpc
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The radio halo in external galaxies

Credit: MPIfR Bonn

Total radio emission of edge-on galaxy

NGC891, observed at 3.6 cm wavelength

with the E↵elsberg telescope

Total radio intensity of edge-on galaxy

NGC 5775, combined from observations at

3.6 cm wavelength with the VLA and

E↵elsberg telescopes
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The �-halo in our Galaxy

Tibaldo et al., 2015, ApJ

I Using high-velocity clouds to measure the emissivity per atom as a function of z
(proportional to CR density)

I Indication of a halo with H & few kpc
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Charged particle transport in turbulent magnetic fields

I A charged particle moving in a field ~B0 + � ~B, with �B ⌧ B0 and � ~B ? ~B0:

d~p
dt

= q
~v
c
⇥ (~B0 + � ~B)

I The perturbation acts on the particle pitch angle only:

dµ
dt

=
qv

pc
(1� µ2)1/2�B cos(⌦t � kz +  ) ⌦ ⌘ qB0

mc�

I It follows:

h�µi ,t = 0

h�µ2i ,t =
q
2
v
2(1� µ2)�B2

c2p2µ
�(k � ⌦/vµ)�t/ �t

I If there are many such waves with a power spectrum W (k):

Dµµ =

⌧
�µ2

�t

�
=
⇡
2
⌦(1� µ2)kresW (kres) kres ⌘

⌦
vµ

⇠ 1
rLµ
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Charged particle transport in turbulent magnetic fields

I The particles deflect by 90 degrees in a timescale

⌧90 ⇠
1

⌦kresW (kres)

I Therefore, the di↵usion in pitch angle also implies their scattering in space

Dzz =

⌧
�z

2

�t

�
⇠

v
2

⌦kresW (kres)
⇠

1

3
rLv

1

kresW (kres)

W (k) / k
��

) Dzz(p) ⇠ 1027
✓
�B

B0

◆�1 ✓
p

GeV/c

◆2��

cm2/s

I What are the waves the CRs scatter o↵?
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The interstellar turbulence

“The (second) Great Power-Law in the Sky” (Jokipii)

Electron-density fluctuations in the ISM

[Armstrong et al. 1995, ApJ 443, 209]

I Turbulence is stirred by Supernovae at a typical

scale L ⇠ 10� 100 pc

I Fluctuations of velocity and magnetic field are

Alfvénic (moving at vA)

I They have a Kolmogorov k�5/3
spectrum (density is

a passive tracer so it has the same spectrum:

�ne ⇠ �B2
):

W (k)dk ⌘
h�Bi2(k)

B2

0

=
2

3

⌘B
k0

✓
k

k0

◆�5/3

I where k0 = L�1
and the level of turbulence is

⌘B =

Z 1

k0

dk W (k) ⇠ 0.1÷ 0.01
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The CR transport equation in the halo model

� @
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fi

�
+ Qfrag/decay

I Spatial di↵usion: ~r · ~J

I Advection by Galactic winds/outflows: u = uw + vA ⇠ vA

I Source term proportional to Galactic SN profile

I Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, . . .

I Production/destruction of nuclei due to inelastic scattering or decay
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Predictions of the halo model

I For a primary CR species (e.g., H, C, O) at energies where I can ignore losses and
advection, the transport equation can be simplified as:

� @
@z


D
@f
@z

�
= Q0(p)�(z)

I For z 6= 0 one has:

D
@f
@z

= constant ! f (z) = f0

✓
1� |z |

H

◆

where I used the definition of a halo: f (z = ±H) = 0.

I The typical solution on the plane gives:

f0(p) =
Q0(p)
2⇡R2

d

H

D(p)
⇠ p

����
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Predictions of the halo model

I For a secondary (e.g., Li, Be, B) the source term is proportional to the primary
density QB ⇠ n̄ISMc�C!BNC :

NB

NC
⇠ H

D0

p
�� (1)

where I use n̄ISM = ndiskh/H.

I By solving the transport equation we obtain a featureless (up to the knee)
propagated spectrum for primaries, and steepened by energy-dependent di↵usion for
secondary species.
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Individual spectra after PAMELA and AMS02
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I New and exciting discoveries!

I Secondary spectra unambiguously requires a change of slope in transport.

I What is missing in our physical picture?
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The halo size H

I Assuming f (z = ±H) = 0 reflects the requirement of lack of di↵usion
(infinite di↵usion coe�cient)

I May be because B ! 0, or because turbulence vanishes (in both cases D
cannot be spatially constant!)

I Vanishing turbulence may reflect the lack of sources

I Can be H dependent on p?

I What is the physical meaning of H?
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Non-linear cosmic ray transport

Skilling71, Wentzel74

I CR energy density is ⇠ 1 eV/cm�3 is comparable to starlight, turbulent gas
motions and magnetic fields.

I In these conditions, low energy can self-generate the turbulence for their scattering
(notice that self-generated waves are with k ⇠ rL)

I Waves are amplified by CRs through streaming instability:

�CR =
16⇡2

3
vA

kW (k)B2

0


p
4
v(p)

@f
@z

�

pres

and are damped by wave-wave interactions that lead the development of a
turbulent cascade:

�d =
Dkk

k2
= (2ck)

�3/2
kvA(kW )1/2

I What is the typical scale/energy up to which self-generated turbulence is dominant?
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Non-linear cosmic ray transport

Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy
density the self-generated turbulence

Wext(ktr) = WCR(ktr)

where WCR corresponds to �CR = �d

Assumptions:

I Quasi-linear theory applies

I The external turbulence has a Kolmogorov spectrum

I Main source of damping is non-linear damping

I Di↵usion in external turbulence explains high-energy flux with SNR e�ciency of
✏ ⇠ 10%

Etr = 228GeV

 
R

2

d,10H
�1/3
3

✏0.1E51R30

!
3/2(�p�4)

B
(2�p�5)/2(�p�4)

0,µ
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The turbulence evolution equation

Jones, ApJ 413, 619 (1993)

@W

@t
=

@

@k


Dkk

@W

@k

�
+

@

@z
(vAW ) + �CRW + Q(k)

I Di↵usion in k-space (non-linear): Dkk = ck |vA|k
7/2

W
1/2

I Advection of the Alfvén waves

I Waves growth due to cosmic-ray streaming: �CR / @f /@z

I External (e.g., SNe) source term Q ⇠ �(z)�(k � k0)

I In the absence of CRs (�CR ! 0), it returns a kolmogorov spectrum:
W (k) ⇠ k

�5/3
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The turbulent halo

Evoli et al., 2018, PRL

⌧cascade = ⌧adv !
k
2

0

Dkk
=

zc

vA

+

zc ⇠ O(kpc)

I zc set the distance at which

turbulence start cascading.
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The turbulent halo

Evoli et al., 2018, PRL
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Non-linear cosmic ray transport: a global picture

Evoli et al., 2018, PRL
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Figure: Turbulence spectrum without (dotted) and with (solid) CR self-generated waves
at di↵erent distance from the galactic plane.
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Non-linear cosmic ray transport: a global picture

Evoli et al., 2018, PRL
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I Pre-existing waves
(Kolmogorov) dominates
above the break

I Self-generated turbulence
between ⇠10-300 GeV

I Voyager data are reproduced
with no additional breaks,
but due to advection with
self-generated waves

I No Halo is assumed a-priori
here
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Quick implication #1: Seeding for the magnetic field?

I The magnetic field of a 108 M� virialized object at z = 30:

Bh = BIGM,0(1 + z)2
✓

⇢̄

⇢IGM

◆2/3

UB =
B

2

h

8⇡
⇠ 4 ⇥ 10�17 erg cm�3

✓
BIGM,0

10�12G

◆2 ✓1 + z

30

◆4

I The SFR for this halo is linked to the halo mass:

⇢⇤ = f⇤
⌦b

⌦m

Mh

t↵(z)
! NSN = fSN⇢⇤tH(z) ⇠ few ⇥ 103

where NSN is the number of SNe exploded at that time.

I Therefore a very rough estimate of the average CR energy density in the
galaxy:

UCR =
⌘NSNESN

(4⇡/3)r3v
⇠ 7 ⇥ 10�12 erg cm�3

� UB
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Quick implication #2: Heating and ionization on ISM?

I I can rewrite the growth rate as

�CR ⇠
PCR(> p)

PB

vA

H

1

kW

I By equating with �D I can derive kW and finally:

Ds�g /

✓
PCR(> p)

PB

◆�1

� DMW

I Energy losses in the halo are extremely more relevant than in the Galaxy:

tl

td
/

Ds�g

ngas
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Quick implication #3: 21cm signal

Leite+, MNRAS, 2017

I Increment of the average IGM temperature by CRs as a function of redshift for
three values of the CR injection slope ↵.
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Take home message

C. Evoli (GSSI) Galactic Cosmic Ray 25/10/2018 31 / 32



Conclusions

I Recent findings by PAMELA and AMS-02 (breaks in the spectra of primaries,
high-energy B/C, flat anti-protons, rising positron fraction) are challenging
the standard scenario of CR propagation.

I I present a model in which SNRs inject: a) turbulence at a given scale with
e�ciency ✏w ⇠ 10�4 and b) cosmic-rays with a single power-law and
✏CR ⇠ 10�1. The turbulent halo and the change of slope at ⇠300 GV are
obtained self-consistently.

I These models enable us a deeper understanding of the interplay between CR,
magnetic turbulence and ISM in our (and possibly other) Galaxy.
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