Recent results on Galactic Cosmic Rays

Carmelo Evoli

Gran Sasso Science Institute (Italy)

COSMOLOGY18 Dubrovnik (Croatia)

(日)

The cosmic-ray "multi-messenger" spectrum

- Non-thermal: Almost a perfect power-law over 11 energy decades.
- Evidence of departures from a perfect power-law: the knee and ankle features.
- \blacktriangleright Spectrum cut-off at $\gtrsim 10^{20}$ eV.
- Particles observed at energy higher than any terrestrial laboratory.
- Direct measurements (at low-E) versus air-cascade reconstructions (at high-E).
- ► Composition at R~10 GV:
 - \sim 99.2% are nuclei
 - \sim 84% protons
 - $\sim 15\%$ He
 - $\sim 1\%$ heavier nuclei
 - \sim 0.7% are electrons
 - $\sim 0.1\%$ are anti-matter particles
- None of them can be unambiguously explained as secondary Dark Matter product! (as far as we know)

(日)

Cosmic Ray factories in our Galaxy: SNR

Chandra's image of SN 1006. In blue high-energy electrons emission.

- Energetically dominant component of the CRs at about a GeV/nucleon are certainly Galactic (Fermi, 1949)
- ▶ With an energy density of ϵ_{CR} ~1 eV/cm³, CRs are in rough equipartition with magnetic fields, gas, photon fields.
- SN explosions can sustain the galactic CR population:

$$L_{\mathrm{CR}} = rac{\epsilon_{\mathrm{CR}} V_{\mathrm{MW}}}{ au_{\mathrm{esc}}} \sim 0.1 \div 0.5 \, L_{\mathrm{SN}}$$

► DSA mechanism predicts a power-law injection spectrum $\propto p^{-2}$

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

Cosmic Ray factories in our Galaxy: sources Gaggero+2013, PRL; Cholis+2018, PRD

- ▶ Particle acceleration at the highest speed shocks in nature $(10^4 < \Gamma < 10^7)$
- Cosmic Rays: only sources showing direct evidence for PeV particles
- Anti-matter storage rooms: as many positrons as electrons

< □ > < □ > < □ > < □ >

Cosmic Rays in our Galaxy: star formation and ionization Padovani+2009 (A&A), Gabici+2010 (A&A), Ivlev+2018 (ApJ)

Image: A math a math

▶ Voyager's launched in 1977 has been measuring the CRs outside the heliosphere

 These sub-GeV particles drives star-formation being able to penetrate molecular clouds.

The diffusive paradigm of galactic CRs

The ratio of boron and carbon fluxes provides us with the best estimates of the time spent by CRs in the Galaxy before escaping.

< □ > < 🗇 >

The diffusive paradigm of galactic CRs

▶ The grammage traversed by CRs is related to the escape time:

$$X(E) = \bar{n}\mu v \tau_{\rm esc}(E)$$

▶ if we assume that the gas is concentrated in a thin disc, h, and the diffusive halo extends to a height H, the mean density

$$\bar{n} = n_d \frac{h}{H} \sim 0.1 \left(\frac{H}{4 \,\mathrm{kpc}}\right)^{-1} \mathrm{cm}^{-3}$$

the typical escape time is

$$au_{
m esc} \sim 100 \left(rac{H}{4\,{
m kpc}}
ight) {
m Myr}$$

Cosmic-ray clocks

PAMELA Collaboration, 2018, ApJ, 862, 2

The observed fraction of unstable isotopes which live long enough, e.g. Be¹⁰ ($\tau \sim 1.4$ Myr), can be used to derive $H \gtrsim 2$ kpc

・ロト ・日下・ ・ ヨト・

The radio halo in external galaxies Credit: MPIfR Bonn

Total radio emission of edge-on galaxy NGC891, observed at 3.6 cm wavelength with the Effelsberg telescope

Total radio intensity of edge-on galaxy NGC 5775, combined from observations at 3.6 cm wavelength with the VLA and Effelsberg telescopes

(日)

The γ -halo in our Galaxy Tibaldo et al., 2015, ApJ

- Using high-velocity clouds to measure the emissivity per atom as a function of z (proportional to CR density)
- ▶ Indication of a halo with $H \gtrsim$ few kpc

Image: A math a math

Charged particle transport in turbulent magnetic fields

▶ A charged particle moving in a field $\vec{B}_0 + \delta \vec{B}$, with $\delta B \ll B_0$ and $\delta \vec{B} \perp \vec{B}_0$:

$$rac{dec{p}}{dt}=qrac{ec{v}}{c} imes(ec{B_0}+\deltaec{B})$$

▶ The perturbation acts on the particle pitch angle only:

$$rac{d\mu}{dt} = rac{qv}{pc}(1-\mu^2)^{1/2}\delta B\cos(\Omega t - kz + \psi) ~~~ \Omega \equiv rac{qB_0}{mc\gamma}$$

It follows:

$$\begin{split} \langle \delta \mu \rangle_{\psi,t} &= 0 \\ \langle \delta \mu^2 \rangle_{\psi,t} &= \frac{q^2 v^2 (1-\mu^2) \delta B^2}{c^2 p^2 \mu} \delta(k-\Omega/v\mu) \delta t \propto \delta t \end{split}$$

▶ If there are many such waves with a power spectrum W(k):

$$D_{\mu\mu} = \left\langle \frac{\delta \mu^2}{\Delta t} \right\rangle = \frac{\pi}{2} \Omega (1 - \mu^2) k_{\rm res} W(k_{\rm res}) \quad k_{\rm res} \equiv \frac{\Omega}{v \mu} \sim \frac{1}{r_L \mu}$$

C. Evoli (GSSI)

Charged particle transport in turbulent magnetic fields

▶ The particles deflect by 90 degrees in a timescale

$$au_{90} \sim rac{1}{\Omega k_{
m res} \mathcal{W}(k_{
m res})}$$

▶ Therefore, the diffusion in pitch angle also implies their scattering in space

$$D_{\rm zz} = \left\langle \frac{\Delta z^2}{\Delta t} \right\rangle \sim \frac{v^2}{\Omega k_{\rm res} W(k_{\rm res})} \sim \frac{1}{3} r_L v \frac{1}{k_{\rm res} W(k_{\rm res})}$$

$$W(k) \propto k^{-eta} \; \Rightarrow \; D_{
m zz}(p) \sim 10^{27} \left(rac{\delta B}{B_0}
ight)^{-1} \left(rac{p}{{
m GeV/c}}
ight)^{2-eta} \, {
m cm}^2/{
m s}$$

< 口 > < 同 >

▶ What are the waves the CRs scatter off?

C. Evoli (GSSI)

The interstellar turbulence

- > Turbulence is stirred by Supernovae at a typical scale $L \sim 10 100$ pc
- Fluctuations of velocity and magnetic field are Alfvénic (moving at v_A)
- They have a Kolmogorov $k^{-5/3}$ spectrum (density is a passive tracer so it has the same spectrum: $\delta n_e \sim \delta B^2$):

$$W(k)dk \equiv \frac{\langle \delta B \rangle^2(k)}{B_0^2} = \frac{2}{3} \frac{\eta_B}{k_0} \left(\frac{k}{k_0}\right)^{-5/3}$$

• where $k_0 = L^{-1}$ and the level of turbulence is

$$\eta_B = \int_{k_0}^\infty dk \ W(k) \sim 0.1 \div 0.01$$

(日)

$$-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_{i}}{\partial z}\right)+u\frac{\partial f_{i}}{\partial z}-\frac{du}{dz}\frac{p}{3}\frac{\partial f_{i}}{\partial p}=Q_{\mathrm{SN}}-\frac{1}{p^{2}}\frac{\partial}{\partial p}\left[p^{2}\frac{dp}{dt}f_{i}\right]+Q_{\mathrm{frag/decay}}$$

▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$

• • • • • • • • • •

$$-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ► Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$

Image: A math a math

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ► Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile
- ▶ Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile
- Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...
- Production/destruction of nuclei due to inelastic scattering or decay

Predictions of the halo model

For a primary CR species (e.g., H, C, O) at energies where I can ignore losses and advection, the transport equation can be simplified as:

$$-\frac{\partial}{\partial z}\left[D\frac{\partial f}{\partial z}\right] = Q_0(p)\delta(z)$$

For $z \neq 0$ one has:

$$Drac{\partial f}{\partial z} = ext{constant} o f(z) = f_0\left(1-rac{|z|}{H}
ight)$$

where I used the definition of a halo: $f(z = \pm H) = 0$.

▶ The typical solution on the plane gives:

$$f_0(p) = rac{Q_0(p)}{2\pi R_{
m d}^2} rac{ extsf{H}}{D(p)} \sim p^{-\gamma-\delta}$$

C. Evoli (GSSI)

< □ > < □ > < □ > < □ >

Predictions of the halo model

For a secondary (e.g., Li, Be, B) the source term is proportional to the primary density Q_B ~ n
{ISM} cσ{C→B}N_C:

$$\frac{N_B}{N_C} \sim \frac{H}{D_0} p^{-\delta} \tag{1}$$

イロト イポト イヨト イヨ

where I use $\bar{n}_{ISM} = n_{disk}h/H$.

By solving the transport equation we obtain a featureless (up to the knee) propagated spectrum for primaries, and steepened by energy-dependent diffusion for secondary species.

Individual spectra after PAMELA and AMS02

- New and exciting discoveries!
- Secondary spectra unambiguously requires a change of slope in transport.
- What is missing in our physical picture?

C. Evoli (GSSI)

イロト イ団ト イヨト イヨ

The halo size H

- Assuming $f(z = \pm H) = 0$ reflects the requirement of lack of diffusion (infinite diffusion coefficient)
- May be because B → 0, or because turbulence vanishes (in both cases D cannot be spatially constant!)
- Vanishing turbulence may reflect the lack of sources
- Can be H dependent on p?
- ▶ What is the physical meaning of *H*?

• • • • • • • • • • • •

Non-linear cosmic ray transport

Skilling71, Wentzel74

- CR energy density is ~ 1 eV/cm⁻³ is comparable to starlight, turbulent gas motions and magnetic fields.
- ▶ In these conditions, low energy can self-generate the turbulence for their scattering (notice that self-generated waves are with $k \sim r_L$)
- ▶ Waves are amplified by CRs through streaming instability:

$$\Gamma_{\rm CR} = \frac{16\pi^2}{3} \frac{v_A}{kW(k)B_0^2} \left[p^4 v(p) \frac{\partial f}{\partial z} \right]_{p_{\rm res}}$$

and are damped by wave-wave interactions that lead the development of a turbulent cascade:

$$\Gamma_{\rm d} = \frac{D_{\rm kk}}{k^2} = (2c_k)^{-3/2} k v_A (kW)^{1/2}$$

What is the typical scale/energy up to which self-generated turbulence is dominant?

イロト イヨト イヨト

Non-linear cosmic ray transport

Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy density the self-generated turbulence

$$W_{
m ext}(k_{
m tr}) = W_{
m CR}(k_{
m tr})$$

where $W_{\rm CR}$ corresponds to $\Gamma_{\rm CR} = \Gamma_{\rm d}$ Assumptions:

- ▶ Quasi-linear theory applies
- ▶ The external turbulence has a Kolmogorov spectrum
- Main source of damping is non-linear damping
- \blacktriangleright Diffusion in external turbulence explains high-energy flux with SNR efficiency of $\epsilon\sim 10\%$

$$E_{\rm tr} = 228 \, {\rm GeV} \, \left(\frac{R_{d,10}^2 H_3^{-1/3}}{\epsilon_{0.1} E_{51} \mathcal{R}_{30}} \right)^{3/2(\gamma_p - 4)} B_{0,\mu}^{(2\gamma_p - 5)/2(\gamma_p - 4)}$$

C. Evoli (GSSI)

• • • • • • • • • •

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

• Diffusion in k-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$

イロト イ団ト イヨト イヨ

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ▶ Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves

< □ > < 同 > < 回 > < Ξ > < Ξ

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ▶ Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ▶ Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$

< □ > < 同 > < 回 > < Ξ > < Ξ

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ► Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ► Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$
- External (e.g., SNe) source term $Q \sim \delta(z)\delta(k k_0)$

イロト イボト イヨト イヨト

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ► Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ► Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$
- External (e.g., SNe) source term $Q \sim \delta(z)\delta(k k_0)$
- ▶ In the absence of CRs ($\Gamma_{\rm CR} \rightarrow 0$), it returns a kolmogorov spectrum: $W(k) \sim k^{-5/3}$

イロト イ団ト イヨト イヨト

The turbulent halo

Evoli et al., 2018, PRL

$$\tau_{\text{cascade}} = \tau_{\text{adv}} \rightarrow \frac{k_0^2}{D_{kk}} = \frac{z_c}{v_A}$$

$$\Downarrow$$

$$z_c \sim \mathcal{O}(\text{kpc})$$

z_c set the distance at which turbulence start cascading.

< □ > < □ > < 三

The turbulent halo

Evoli et al., 2018, PRL

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Figure: Turbulence spectrum without (dotted) and with (solid) CR self-generated waves at different distance from the galactic plane.

< 17 ▶

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

- Pre-existing waves (Kolmogorov) dominates above the break
- Self-generated turbulence between ~10-300 GeV
- Voyager data are reproduced with no additional breaks, but due to advection with self-generated waves
- No Halo is assumed a-priori here

(日)

Quick implication #1: Seeding for the magnetic field?

> The magnetic field of a 10^8 M_{\odot} virialized object at z = 30:

$$\begin{split} B_h &= B_{\rm IGM,0} (1+z)^2 \left(\frac{\bar{\rho}}{\rho_{\rm IGM}}\right)^{2/3} \\ U_B &= \frac{B_h^2}{8\pi} \sim 4 \times 10^{-17} \, \rm erg \, cm^{-3} \left(\frac{B_{\rm IGM,0}}{10^{-12} \rm G}\right)^2 \left(\frac{1+z}{30}\right)^4 \end{split}$$

▶ The SFR for this halo is linked to the halo mass:

$$ho_* = f_* rac{\Omega_b}{\Omega_m} rac{M_h}{t_{
m ff}(z)}
ightarrow N_{
m SN} = f_{
m SN}
ho_* t_{
m H}(z) \sim {
m few} imes 10^3$$

where $N_{\rm SN}$ is the number of SNe exploded at that time.

Therefore a very rough estimate of the average CR energy density in the galaxy:

$$U_{\rm CR} = \frac{\eta N_{\rm SN} E_{\rm SN}}{(4\pi/3) r_v^3} \sim 7 \times 10^{-12} \, {\rm erg} \, {\rm cm}^{-3} \gg U_B$$

Quick implication #2: Heating and ionization on ISM?

I can rewrite the growth rate as

$$\Gamma_{\rm CR} \sim \frac{P_{\rm CR}(>p)}{P_B} \frac{v_A}{H} \frac{1}{kW}$$

• By equating with Γ_D I can derive kW and finally:

$$D_{
m s-g} \propto \left(rac{P_{
m CR}(>p)}{P_B}
ight)^{-1} \gg D_{
m MW}$$

Energy losses in the halo are extremely more relevant than in the Galaxy:

$$rac{t_l}{t_d} \propto rac{D_{
m s-g}}{n_{
m gas}}$$

C. Evoli (GSSI)

(日)

Quick implication #3: 21cm signal Leite+, MNRAS, 2017

Increment of the average IGM temperature by CRs as a function of redshift for three values of the CR injection slope α.

< 口 > < 同 >

Take home message

< □ > < □ > < □ > < □ > < □ >

Conclusions

- Recent findings by PAMELA and AMS-02 (breaks in the spectra of primaries, high-energy B/C, flat anti-protons, rising positron fraction) are challenging the standard scenario of CR propagation.
- ▶ I present a model in which SNRs inject: a) turbulence at a given scale with efficiency $\epsilon_{\rm w} \sim 10^{-4}$ and b) cosmic-rays with a single power-law and $\epsilon_{\rm CR} \sim 10^{-1}$. The turbulent halo and the change of slope at ~300 GV are obtained self-consistently.
- These models enable us a deeper understanding of the interplay between CR, magnetic turbulence and ISM in our (and possibly other) Galaxy.

イロト イボト イヨト イヨト