NEUTRINO PROPERTIES FROM COSMOLOGY

Cosmology 2018 in Dubrovnik 26 October 2018

Martina Gerbino Craar Klein OKC, Stockholm University

Stockholms universitet

Neutrino cosmology BOOKS:

- Lesgourgues, Mangano, Miele, Pastor, 'Neutrino Cosmology', Cambridge U.Press, 2013
- Giunti&Kim, 'Fundamentals of Neutrino Physics and Astrophysics', Oxford U. Press, 2007

REVIEWS:

- Gerbino&Lattanzi, 2017
- PDG Review on Neutrinos, Lesgourgues&Verde, 2017
 Wong, 2011
 Lesgourgues&Pastor, 2006

This talk based on work with S.Vagnozzi, E.Giusarma, M.Lattanzi, O.Mena, S.Ho, K.Freese, Planck collaboration, SO collaboration

Martina Gerbino

Basics of neutrino cosmology

Martina Gerbino

Martina Gerbino

Lightest neutrino mass state

Current limits on Neff

 $N_{\text{eff}} = 2.99^{+0.34}_{-0.33}, 95 \% c . l ., \text{Planck2018} + \text{BAO}$

Martina Gerbino

Cosmology2018, 26Oct2018

Presence of additional fully thermalised species decoupling after QCD phase transition excluded at 95%c.l.

~eV thermalised sterile neutrino excluded at 7sigma Non-standard models needed to make SBL compatible with cosmology

Martina Gerbino

Simons Observatory (SO) in a nutshell

- Multi-frequency CMB experiments observing from Cherro Toco (Chile)
 Start observing from ~2020. Initial configuration:
 - * 3 small-aperture telescopes devoted primarily to primordial tensor-toscalar ratio measurements
 - * 1 large-aperture telescope devoted primarily to damping tail, gravitational lensing, bispectrum, Sunyaev–Zel'dovich effects, and delensing science

Forecast paper is out: arXiv:1808.07445 [astro-ph.CO] data products: <u>https://www.simonsobservatory.org/publications.php</u>

Route to robust neutrino mass bounds

- CMB lensing from SO combined with DESI BAO $\sigma(\Sigma m_{\nu}) = 0.04 \,\text{eV} \,[0.03 \,\text{eV}]$
- Sunyaev-Zeldovich cluster counts from SO calibrated with LSST weak lensing

 $\sigma(\Sigma m_{\nu}) = 0.04 \,\mathrm{eV} \,[0.03 \,\mathrm{eV}]$

 thermal SZ distortion maps from SO combined with DESI BAO

 $\sigma(\Sigma m_{\nu}) = 0.05 \,\mathrm{eV} \,[0.04 \,\mathrm{eV}]$

-legacy SO dataset combined with cosmic-variance-limited measurement of reionization optical depth τ

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$

SO collaboration, 2018

Route to robust neutrino mass bounds

Martina Gerbino

Route to improved bounds on Neff

Primary CMB temperature and polarization power spectra from SO

 $\sigma(N_{\rm eff}) = 0.07 [0.05]$

SO collaboration, 2018

Route to improved bounds on Neff

Martina Gerbino

CONCLUSIONS

Determine CnB properties from neutrino peculiar effects on cosmological observables

Strong and robust constraints from cosmology

Neutrino masses: getting closer to cornering inverting hierarchy

Neff: no preference for an additional thermalised species

Next generation surveys would probe the physics of noninstantaneous decoupling and detect the neutrino mass scale with high statistical significance