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Phase-space distribution of DM & theoretical
uncertainties for direct and indirect searches

Direct searches
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Merger rates (gravitational waves)

+ DM substructures (test masses), disruption of stellar binaries 2



Standard approaches 1: "Standard halo model"

Standard halo model (SHM)
Maxwell-Boltzmann distribution

f (~v) =
1

v3
cπ3/2

e−(
~v
vc )

2

Oversimplification

Isothermal sphere

Infinite system

Ad hoc truncation at vesc
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Standard approaches 2: direct fits to simulations
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Figure 4: Velocity distributions of dark matter particles (Nshell = 16, 545) in a spherical shell

7 < R < 9 kpc around the galactic center.

a), b) and c) Velocity components along the principal axes of the velocity dispersion tensor, together

with the Gaussian (red) and a generalized Gaussian (green) distribution fits (cfr. Eq. (2.1)).

d) Velocity module, with Maxwellian (red), Tsallis (green) and generalized Maxwellian (orange and

purple) fits (cfr. Eqs. (2.2,2.3)).

µ, � (both in km/s) and K stand for the mean, the standard deviation and the Kurtosis parameter

of the distribution. The goodness of fit is indicated by the value of the �2 vs. the number of degrees

of freedom (dof).

For the velocity components, a fit with a generalized Gaussian distribution (in green

in Fig. 4, panels a), b) and c)) shows that the velocity distribution given by the simulation

is systematically more flat than a Gaussian distribution. This property can be described

by the so-called Kurtosis parameter K, which compares the fourth-order moment with the

square of the variance. A Kurtosis parameter K < 3 corresponds to a distribution that is

platykurtic, i.e.more flat than a Gaussian distribution with the same standard deviation,

– 8 –

Ling+ 2010, Mollitor+ 2014

Francesca Calore LAPTh - CNRS

Velocity	distribu7on	in	hydro	simula7ons
A.	Macciò	talk

• Devia*ons	from	standard	halo	model	with	
fixed	v0	are	present.	

• Typically,	a	Maxwellian	with	free	peak	v0	
beTer	descrip*on	for	hydro	case	w.r.to	DMO.	

• ShiN	of	v0	to	high	speeds	w.r.to	DMO.	
• Dark	co-rota*ng	disks	are	not	a	general	
predic*on	of	hydro	simula*ons.

v0 = 232 km/s

v0 = 289 km/s

EAGLE

MaGICC
Kelso+ JCAP’16

v0 = 187 km/s

Sloane+ ApJ’16

Mao+2013

v0 = 204 km/s
MB	fixed/free

Bozorgnia+ JCAP’16

Bozorgnia+ 2016

Francesca Calore LAPTh - CNRS

Velocity	distribu7on	in	hydro	simula7ons
A.	Macciò	talk

• Devia*ons	from	standard	halo	model	with	
fixed	v0	are	present.	

• Typically,	a	Maxwellian	with	free	peak	v0	
beTer	descrip*on	for	hydro	case	w.r.to	DMO.	

• ShiN	of	v0	to	high	speeds	w.r.to	DMO.	
• Dark	co-rota*ng	disks	are	not	a	general	
predic*on	of	hydro	simula*ons.

v0 = 232 km/s

v0 = 289 km/s

EAGLE

MaGICC
Kelso+ JCAP’16

v0 = 187 km/s

Sloane+ ApJ’16

Mao+2013

v0 = 204 km/s
MB	fixed/free

Bozorgnia+ JCAP’16

Kelso+ 2016 Francesca Calore LAPTh - CNRS

Velocity	distribu7on	in	hydro	simula7ons
A.	Macciò	talk

• Devia*ons	from	standard	halo	model	with	
fixed	v0	are	present.	

• Typically,	a	Maxwellian	with	free	peak	v0	
beTer	descrip*on	for	hydro	case	w.r.to	DMO.	

• ShiN	of	v0	to	high	speeds	w.r.to	DMO.	
• Dark	co-rota*ng	disks	are	not	a	general	
predic*on	of	hydro	simula*ons.

v0 = 232 km/s

v0 = 289 km/s

EAGLE

MaGICC
Kelso+ JCAP’16

v0 = 187 km/s

Sloane+ ApJ’16

Mao+2013

v0 = 204 km/s
MB	fixed/free

Bozorgnia+ JCAP’16

Sloane+ 2016
4



Standard approaches 2: direct fits to simulations

General insight

Generic features found in
simulations (e.g., cusp/cores)

Hydro
DMO
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Figure 2. Comparison of the local DM speed distributions in the Galactic rest frame for a MW
analogue (halo E3) in the EAGLE HR hydrodynamical simulation (solid orange line and its 1� error
band) and its DMO counterpart (solid brown line and its 1� error band). Dashed lines specify the
best fit Maxwellian speed distributions for the hydrodynamical (orange) and DMO (brown) case.

gives a good fit to the speed distribution of the simulated halo in the hydrodynamical case, but
cannot provide a good fit in the DMO case. For most haloes in the EAGLE and APOSTLE
DMO simulations, there are large deficits of DM particles at the peak, and an excess at low
and very high speeds compared to the best fit Maxwellian distribution. These features are
similar to those seen in other DMO simulations [11, 12].

6.1.5 MaGICC

The same torus described in Section 5 is considered to find the average DM speed distribution.
The region of the torus contains 4849 and 6541 particles for the two MW-like galaxies in the
MaGICC simulations. The speed distributions of the simulated haloes are compared to the
SHM speed distribution inferred for each halo from its mass distribution. Other than the
inferred SHM, two additional approximations are considered: the best fit Maxwellian speed
distribution assuming a stationary halo, as well as allowing for a bulk rotation of the halo.
The SHM provides a reasonable fit to the speed distributions of the simulated haloes, except
in the high speed tail where there is some deficit of particles from the simulations compared
to the SHM. The best fit Maxwellian distributions with and without rotation also provide
good fits to the speed distributions from simulations and are almost identical.

In agreement with previous DMO simulations, the SHM is not a good fit to the speed
distribution of the halo in the MaGICC DMO simulation.

6.1.6 Sloane et. al.

Sloane et al. considers the same cylindrical annulus described in Section 5 to find the local DM
speed distribution. There are a total of 5847 – 7460 DM particles in the annulus, depending
on the halo. The average DM speed distribution in this annulus is found for each halo, and
compared to the SHM assuming a Maxwellian speed distribution with a peak speed of 220
km/s, the best fit Maxwellian speed distribution, and the empirical speed distribution from
Mao et al. (Eq. 6.2). Compared to the SHM, there is a deficit of high velocity DM particles
in the simulations. However, the SHM is a better fit to the haloes in the hydrodynamical
simulations compared to their DMO counterparts. The best fit Mao et al. fitting function
provides a better fit to the speed distributions from the simulations, compared to the SHM.
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Bozorgnia+ 2017

But insufficient approach

Extrapolations based on fits
at 8 kpc

Peak speed free parameter
⇒ not connected to circular
speed

MW one particular
realization

MW constrained system
(e.g., Gaia)

Subgrid physics

Self-consistent approach required

Eddington-like methods: next-to-minimal approach
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Phase space of dark matter from first principles

Phase-space distribution f (~v,~r): closed system

Collisionless Boltzmann equation, steady state

{f , H} =~v · ∂f
∂~r
− ∂Φ

∂~r
· ∂f

∂~v
= 0

−→ Jeans’ theorem: f ≡ f (I1, . . . , IN) where {Ii, H} = 0

Poisson equation

∆Φ = 4πGρ with ρ =
∫

f (~v,~r)d3v

Eddington’s inversion formula (Eddington 1916)

Isotropic system + spherical symmetry: f (~v, r) ≡ f (E)
with E = Ψ(r)− v2

2
and Ψ(r) = Φ(Rmax)−Φ(r)

f (E) = 1√
8π2

[
1√
E

(
dρ

dΨ

)
Ψ=0

+
∫ E

0

d2ρ

dΨ2
dΨ√
E −Ψ

]
+ anisotropic extensions 6
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Velocity distribution

Central ingredient for observables

f~v(~v, r) ≡ f (E , L)
ρDM(r)

Speed distribution (v = |~v|)

fv(v, r) ≡ v2
∫

dΩv f~v(~v, r)

Encapsulates most of the dynamical information

For isotropic distribution

fv(v, r) =
4πv2

ρDM(r)
f
(

Ψ(r)− v2

2

)
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Going beyond spherical symmetry

Angle-action coordinates

More suitable coordinate system if no spherical symmetry
Binney & Tremaine 1987

Best way to account for complexity revealed by Gaia

But very cumbersome calculations

Ansatz for f (~r,~v) ⇒ theoretical uncertainties

Level of refinement not necessarily required for DM searches
→ Evaluate astrophysical uncertainties

Eddington’s formalism

Lower level of technicalities to account for dynamical constraints

Method applied blindly to direct searches so far
→ Timely to study validity range in detail

9



Theoretical consistency and radial boundary

Imposing a radial boundary

Finite system (Rmax)⇒ divergence of f (~r,~v) at vesc (from 1/
√
E )

Phase-space compression

vesc crucial (direct DM searches at low masses, stellar surveys)
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Theoretical consistency and radial boundary

Regularization

Modified profile, flat at Rmax

Energy cutoff (King)
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Not possible for radial anisotropy (e.g., Osipkov-Merritt)
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Theoretical consistency: instabilities

Validity range of the method

Standard criterion:
f > 0

Antonov instabilities for
some DM-baryon
configurations

Stable solution if
df
dE > 0⇔ d2ρ

dΨ2 > 0

Doremus+ 1971, Kandrup &
Sygnet 1985

Select mass models

Lacroix+ 2018a

For anisotropic systems criteria
against radial perturbations only
Doremus+ 1973
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Impact on predictions for direct DM searches

Event rate proportional to

η(vmin) =
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f~v,⊕(~v)
v

d3v

Isotropic

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

η(
v m

in
)
[(
k
m
/s

)−
1
]

Lacroix, Stref&Lavalle (2018)

Isotropic speed distribution (Rmax = 500kpc)

divergence removed

flattened density
Rmax→∞
King model with Ec = Ψ(Rmax)

King model with Ψ̃(Rmax) = 0

Standard halo model (Rmax = 500kpc)

sharp truncation

smooth truncation

Standard halo model (Rmax = 500kpc)

sharp truncation

smooth truncation

0 100 200 300 400 500
vmin [km/s]

1.6

0.8

0.0

0.8

1
−
η/
η s

h
m

Osipkov-Merritt

10-8

10-7

10-6

10-5

10-4

10-3

10-2

η(
v m

in
)
[(
k
m
/s

)−
1
]

Lacroix, Stref&Lavalle (2018)

Osipkov-Merrit speeddistribution

divergence removed (Rmax = 500kpc)

flatteneddensity (Rmax = 500kpc)

Rmax→∞

Standardhalomodel (Rmax = 500kpc)

sharp truncation

smooth truncation

Standardhalomodel (Rmax = 500kpc)

sharp truncation

smooth truncation

0 100 200 300 400 500
vmin [km/s]

0.8
0.4
0.0
0.4
0.8

1
−
η/
η s

h
m

Lacroix+ 2018a 13



Impact on predictions for indirect DM searches

Prototypical case: p-wave annihilation
〈σv〉(r) ∝

〈
v2

r
〉
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Lacroix+ 2018a
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Actual predictivity of Eddington’s formalism?
Tests with cosmological simulations

Description

2 sets of simulations
Mollitor+ 2015
MDM = 2.3× 105 M�, Hsml = 150 pc
Núñez+ 2018, in prep.
MDM = 1.9× 105 M�, Hsml = 280 pc

20 Mpc boxes + zoom-in

DM-only + hydro

Procedure
Fit mass model from simulation
⇒ ρDM, ρB, Ψ = ΨDM + ΨB

Input for Eddington’s method

Comparison with simulation
outputs

Lacroix+ 2018b, in prep.

Gas Stars
               Star formation         ↔               Feedback 
         (Krumholz & Tan 2007)                   (Teyssier  et  al 2013)

                                           ↔    (Delayed Cooling )   
Dark Matter

HB
Mollitor et al.

Arxiv:1405.4318
Mdm = 2.3x105 MSun

Hsml = 150 pc

M
Upcoming 
publication

Mdm = 1.9x105 MSun
Hsml = 190 pc

Cosmological hydrodynamical Simulations
Ramses AMR (Teyssier 2002)
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Speed distribution fv(v, r)158 5.5. Test of the Eddington formalism on hydrodynamic cosmological simulations

Figure 5.20 – Velocity distributions measured in Halo B, at 2 kpc < r < 4 kpc (upper left panel),
7 kpc < r < 9 kpc (upper right panel), 19 kpc < r < 21 kpc (lower left panel), and 49 kpc < r < 51 kpc.
We also show the distribution predicted by the Eddington method, the Maxwell-Boltzmann distribution
and the smoothly-truncated Maxwell-Boltzmann distribution.

seems to roughly capture the main features observed in the simulations. In particular, it seems
to perform better than the Maxwell-Boltzmann approximation, which is widely used in dark
matter studies. When completed, our study will include direct comparison of the phase-space
distributions from the Eddington method and the simulations, as well as the study of anisotropic
cases. This will allow us to have a quantitative estimate of the astrophysical uncertainties in
dark matter studies based on Eddington-like methods, and a good idea of the global performance
of this framework in dark-matter-related searches.

Lacroix+
2018b, in prep.
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Moments of the speed distribution

n = -2

n = -1

n = 1

n = 2

n = -2

n = -1

n = 1

n = 2

Lacroix+ 2018b, in prep. 17



Full phase-space distribution

Reconstruction from 2D bins ij in phase space (ri, vj)

f (E) = m
d6N

d3xd3v
→ f (E)ij =

m
(4πrivj)2

Nij

∆ri∆vj

Lacroix+ 2018b, in prep.
⇒ Very good agreement for isotropic distribution 18



Application: constraints on sub-GeV DM from
cosmic positrons - p-wave annihilation

p-wave annihilation

σv = σ1v2
r ⇒ 〈σv〉 ≡ 〈σv〉(r)

〈σv〉(r) = σ1

∫
d3v1d3v2 fr(~v1) fr(~v2) v2

r

⇒ ψe 6= 〈σv〉
∫

ρ2(r)d3r

Very strong e+ constraints
(Voyager 1, AMS-02)

Justifies focusing on Eddington’s
methods

Robust w.r.t. uncertainties on
anisotropy and propagation
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Propagation A
Propagation B
Propagation A
Propagation B

Boudaud+ 2018
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Summary

Eddington’s inversion method

A few physical assumptions

Moderate level of technicalities

Mass model direct input

Better control astrophysical uncertainties for DM searches

Dramatic changes wrt Maxwell-Boltzmann

Self-consistency: theoretical validity range

Radial boundary (direct searches)

Positive DF + stability

Actual predictivity?

Testing the method against cosmological simulations

Not direct fits!!!

Preliminary results: Eddington method globally performs much
better than SHM Lacroix+ 2018b, in prep.
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Thank you for your attention!
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