Simple self-consistent prediction methods for the phase space of dark matter: from galactic dynamics to phenomenology

> Thomas Lacroix Collaborators: M. Boudaud, J. Lavalle, E. Nezri, A. Núñez-Castiñeyra, P. Salati, M. Stref

> > Cosmology 2018 in Dubrovnik

October 26, 2018

Phase-space distribution of DM & theoretical uncertainties for direct and indirect searches

Direct searches

$$
\frac{dR}{dE} \propto \rho_\odot \int_{v_{\rm min} \leqslant |\vec{v}| \leqslant v_{\rm esc}} \hspace*{-3mm} \frac{f_\odot(\vec{v})}{|\vec{v}|} \, d^3v
$$

Impact at low masses *v*min ∼ *v*esc

Speed-dependent annihilation

•
$$
\langle \sigma v \rangle (r) \propto \langle v_r^2 \rangle
$$
 p-wave
\n $\sigma v = \sigma_1 v_r^2 \Rightarrow \langle \sigma v \rangle \equiv \langle \sigma v \rangle (r)$

$$
\langle \sigma v \rangle(r) = \sigma_1 \int d^3v_1 d^3v_2 f_r(\vec{v}_1) f_r(\vec{v}_2) v_r^2
$$

•
$$
\langle \sigma v \rangle (r) \propto \langle 1/v_r \rangle
$$
 or $\langle 1/v_r^2 \rangle$
Sommerfeld enhancement

Primordial black holes

- Gravitational microlensing event rates (EROS, MACHO) dΓ $\frac{d\Gamma}{dt} \propto \rho(r) \int v f(\vec{v}, \vec{r}) d^3v$
- Merger rates (gravitational waves)

+ DM substructures (test masses), disruption of stellar binaries **²**

Standard halo model (SHM)

Maxwell-Boltzmann distribution

$$
f(\vec{v}) = \frac{1}{v_{\rm c}^3 \pi^{3/2}} e^{-\left(\frac{\vec{v}}{v_{\rm c}}\right)^2}
$$

Oversimplification

- Isothermal sphere
- Infinite system
- Ad hoc truncation at v_{esc}

- *S*tandard approaches 2: direct fits to simulations

Bozorgnia+ 2016

4

Standard approaches 2: direct fits to simulations

General insight

Generic features found in simulations (e.g., cusp/cores)

But insufficient approach

- Extrapolations based on fits at 8 kpc
- **Peak speed free parameter** ⇒ not connected to circular speed
- MW one particular realization
- MW constrained system (e.g., Gaia)
- Subgrid physics

Self-consistent approach required

band) and its DMO counterpart (solid brown line and its 1 error band). Dashed lines specify the

DMO simulations, there are large deficits of DM particles at the peak, and an excess at low

Eddington-like methods: next-to-minimal approach cannot provide a good fit in the DMO case. For most α

Phase space of dark matter from first principles

Phase-space distribution $f(\vec{v}, \vec{r})$: closed system

Collisionless Boltzmann equation, steady state

$$
\{f,H\} = \vec{v} \cdot \frac{\partial f}{\partial \vec{r}} - \frac{\partial \Phi}{\partial \vec{r}} \cdot \frac{\partial f}{\partial \vec{v}} = 0
$$

 \longrightarrow Jeans' theorem: $f \equiv f(I_1, \ldots, I_N)$ where $\{I_i, H\} = 0$

• Poisson equation

$$
\Delta \Phi = 4\pi G \rho \text{ with } \rho = \int f(\vec{v}, \vec{r}) d^3v
$$

Eddington's inversion formula (Eddington 1916)

Isotropic system + spherical symmetry: $f(\vec{v}, r) \equiv f(\mathcal{E})$ with $\mathcal{E} = \Psi(r) - \frac{v^2}{2}$ $\frac{1}{2}$ and $\Psi(r) = \Phi(R_{\text{max}}) - \Phi(r)$ $f(\mathcal{E}) = \frac{1}{\sqrt{8}\pi^2}$ $\begin{bmatrix} 1 \end{bmatrix}$ √ E d*ρ* dΨ \setminus $Y=0$ $+ \int^{\mathcal{E}}$ $\boldsymbol{0}$ d 2*ρ* dΨ² dΨ $\sqrt{\mathcal{E} - \Psi}$ 1

+ anisotropic extensions **⁶**

Phase space of dark matter from first principles

Phase-space distribution $f(\vec{v}, \vec{r})$: closed system

Collisionless Boltzmann equation, steady state

$$
\{f,H\} = \vec{v} \cdot \frac{\partial f}{\partial \vec{r}} - \frac{\partial \Phi}{\partial \vec{r}} \cdot \frac{\partial f}{\partial \vec{v}} = 0
$$

 \longrightarrow Jeans' theorem: $f \equiv f(I_1, \ldots, I_N)$ where $\{I_i, H\} = 0$

• Poisson equation

$$
\Delta \Phi = 4\pi G \rho \text{ with } \rho = \int f(\vec{v}, \vec{r}) d^3v
$$

Eddington's inversion formula (Eddington 1916)

Isotropic system + spherical symmetry: $f(\vec{v}, r) \equiv f(\mathcal{E})$ with $\mathcal{E} = \Psi(r) - \frac{v^2}{2}$ $\frac{1}{2}$ and $\Psi(r) = \Phi(R_{\text{max}}) - \Phi(r)$ $f(\mathcal{E}) = \frac{1}{\sqrt{8}\pi^2}$ $\begin{bmatrix} 1 \end{bmatrix}$ √ E d*ρ* dΨ \setminus $Y=0$ $+ \int^{\mathcal{E}}$ $\boldsymbol{0}$ d 2*ρ* dΨ² dΨ $\sqrt{\mathcal{E} - \Psi}$ 1

+ anisotropic extensions **⁷**

Velocity distribution

Central ingredient for observables

$$
f_{\vec{v}}(\vec{v},r) \equiv \frac{f(\mathcal{E},L)}{\rho_{\text{DM}}(r)}
$$

Speed distribution ($v = |\vec{v}|$)

$$
f_v(v,r) \equiv v^2 \int d\Omega_v f_{\vec{v}}(\vec{v},r)
$$

Encapsulates most of the dynamical information

For isotropic distribution

$$
f_v(v,r) = \frac{4\pi v^2}{\rho_{\text{DM}}(r)} f\left(\Psi(r) - \frac{v^2}{2}\right)
$$

Going beyond spherical symmetry

Angle-action coordinates

- More suitable coordinate system if no spherical symmetry Binney & Tremaine 1987
- Best way to account for complexity revealed by Gaia
- But very cumbersome calculations
- Ansatz for $f(\vec{r}, \vec{v}) \Rightarrow$ theoretical uncertainties
- Level of refinement not necessarily required for DM searches
	- \rightarrow Evaluate astrophysical uncertainties

Eddington's formalism

- Lower level of technicalities to account for dynamical constraints
- Method applied blindly to direct searches so far
	- \rightarrow Timely to study validity range in detail

Theoretical consistency and radial boundary

Imposing a radial boundary

- Finite system (R_{max}) \Rightarrow divergence of $f(\vec{r}, \vec{v})$ at v_{esc} (from $1/\sqrt{\mathcal{E}}$)
- Phase-space compression
- v_{esc} crucial (direct DM searches at low masses, stellar surveys)

Theoretical consistency and radial boundary

Regularization

- Modified profile, flat at R_{max}
- Energy cutoff (King)

Not possible for radial anisotropy (e.g., Osipkov-Merritt)

Theoretical consistency: instabilities

Validity range of the method

- Standard criterion: $f \geqslant 0$
- Antonov instabilities for some DM-baryon configurations
- Stable solution if d*f* $\frac{df}{d\mathcal{E}} > 0 \Leftrightarrow \frac{d^2\rho}{d\Psi^2}$ $\frac{d^2y}{d^2} > 0$ Doremus+ 1971, Kandrup & Sygnet 1985
- Select mass models

Lacroix+ 2018a

For anisotropic systems criteria against radial perturbations only Doremus+ 1973

Impact on predictions for direct DM searches

Event rate proportional to

$$
\eta(v_{\min}) = \int_{v_{\min} \leq v \leq v_{\oplus} + v_{\text{esc}}} \frac{f_{\vec{v},\oplus}(\vec{v})}{v} d^3v
$$

Isotropic

Osipkov-Merritt

Impact on predictions for indirect DM searches

Prototypical case: p-wave annihilation $\langle \sigma v \rangle (r) \propto \langle v_{\rm r}^2 \rangle$

Lacroix+ 2018a

Actual predictivity of Eddington's formalism? Tests with cosmological simulations Star formation ↔ Feedback Dark Matter

Description

- 2 sets of simulations Mollitor+ 2015 $M_{\text{DM}} = 2.3 \times 10^5 \,\text{M}_{\odot}$, Hsml = 150 pc Núñez+ 2018, in prep. $M_{\text{DM}} = 1.9 \times 10^5 \,\text{M}_{\odot}$, Hsml = 280 pc
- 20 Mpc boxes + zoom-in
- DM-only + hydro

Procedure

- Fit mass model from simulation $\Rightarrow \rho_{DM}, \rho_B, \Psi = \Psi_{DM} + \Psi_B$
- Input for Eddington's method
- Comparison with simulation outputs

${\bf Speed\ distribution\ }f_{v}(v,r)$

2018b, in prep.

Moments of the speed distribution

Full phase-space distribution

Reconstruction from 2D bins *ij* in phase space (*rⁱ* , *v^j*)

$$
f(\mathcal{E}) = m \frac{d^6 N}{d^3 x d^3 v} \rightarrow f(\mathcal{E})_{ij} = \frac{m}{(4\pi r_i v_j)^2} \frac{N_{ij}}{\Delta r_i \Delta v_j}
$$

Application: constraints on sub-GeV DM from cosmic positrons - *p***-wave annihilation**

*p***-wave annihilation**

$$
\sigma v = \sigma_1 v_{\rm r}^2 \Rightarrow \langle \sigma v \rangle \equiv \langle \sigma v \rangle (r)
$$

$$
\langle \sigma v \rangle(r) = \sigma_1 \int d^3v_1 d^3v_2 f_r(\vec{v}_1) f_r(\vec{v}_2) v_{\rm r}^2
$$

$$
\Rightarrow \psi_{\rm e} \neq \langle \sigma v \rangle \int \rho^2(r) \, \mathrm{d}^3 r
$$

- Very strong *e* ⁺ constraints (**Voyager 1**, AMS-02)
- Justifies focusing on Eddington's methods
- Robust w.r.t. uncertainties on anisotropy and propagation

Boudaud+ 2018

Summary

Eddington's inversion method

- A few physical assumptions
- Moderate level of technicalities
- Mass model direct input
- Better control astrophysical uncertainties for DM searches
- Dramatic changes wrt Maxwell-Boltzmann

Self-consistency: theoretical validity range

- Radial boundary (direct searches)
- Positive $DF +$ stability

Actual predictivity?

- Testing the method against cosmological simulations
- Not direct fits!!!
- Preliminary results: Eddington method globally performs much better than SHM Lacroix+ 2018b, in prep.

Thank you for your attention!

