

Nicole d'Hose – CEA – Université Paris-Saclay

COMPASS: a Facility to study QCD

Hadron Spectroscopy with π beams Test of ChPT & π polarizabilities

COMPASS-I 1997-2011

polarized SIDIS (and HEMP) with \(\overline{\mu}^2\) beams with Long or Trans. Polarized Targets

COMMON
MUON and
PROTON
APPARATUS for
STRUCTURE and
SPECTROSCOPY

1 month in 2012 6 months in 2016 6 months in 2017

Polarised Drell-Yan with π beams

DVCS-HEMP (GPDs) & unp. SIDIS with with μ beams with LH2 target

Deeply virtual Compton scattering (DVCS)

D. Mueller *et al,* Fortsch. Phys. 42 (1994) **X.D. Ji**, PRL 78 (1997), PRD 55 (1997) **A. V. Radyushkin**, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process also meson production

 $\ell p \rightarrow \ell' p' \pi$, ρ , ω or ϕ or J/ψ ...

The GPDs depend on the following variables:

x: average long. momentum

 ξ : long. mom. difference

t: four-momentum transfer related to b₁ via Fourier transform

The variables measured in the experiment:

$$E_{\ell}$$
, Q^2 , $x_B \sim 2\xi/(1+\xi)$,
t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

Deeply virtual Compton scattering (DVCS)

From Goeke, Polyakov, Vanderhaeghen, PPNP47 (2001) -q(x) $H(x,\xi,0)$ DGLAP 10 0.2 7.5 0.4 2.5 ERBL -2.5 0.5 -0.5

The amplitude DVCS at LT & LO in α_s :

Real part Imaginary part

$$\mathcal{H} = \int_{t, \, \xi \, \text{fixed}}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi + i \, \epsilon} = \mathcal{P} \int_{-1}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi} \, - i \, \pi \, H(x \pm \xi, x, t)$$

GPD **H**, Compton Form Factor
$$\mathcal{H}$$
 $\Re \mathcal{H}(x,t) = \int_{-1}^{1} dx \, \frac{Im \mathcal{H}(x,t)}{x-\xi} + \, d(t)$

GPDs and 3D imaging

M. Burkardt, PRD66(2002)

mapping in the transverse plane Impact parameter distribution

Correlation between the spatial distribution of partons and the longitudinal momentum fraction

GPDs and Energy-Momentum Tensor and Confinement

GPDs can provide an experimental answer by exploiting their equivalence to the gravitational form factors of the nucleon energy-momentum-tensor (fundamental nucleon properties)

$$\mathbf{H}^{q}(x, \xi, t) \stackrel{t \to 0}{\to} q(x) \text{ or } f_{1}(x)$$

"Elusive" $\mathbf{E}^{q}(x, \xi, t) \longleftarrow f_{1T}(x, k_{T})$

Sivers: quark k_{T} & nucleon transv. spin

$$2\mathbf{J}^{q} = \lim_{t\to 0} \int x \left(\mathbf{H}^{q} (x, \xi, t) + \mathbf{E}^{q} (x, \xi, t) \right) dx$$

The GPD E is the grail for OAM quest

GPDs can provide an experimental answer by exploiting their equivalence to the gravitational form factors of the nucleon energy-momentum-tensor (fundamental nucleon properties)

$$\mathbf{H}^{q}(x, \xi, t) \stackrel{t \to 0}{\to} q(x) \text{ or } f_{1}(x)$$

"Elusive"
 $\mathbf{E}^{q}(x, \xi, t) \longleftarrow f_{1T}(x, \mathbf{k}_{T})$

Sivers: quark \mathbf{k}_{T} & nucleon transv. spin

$$2J^{q} = \lim_{t\to 0} \int x \left(H^{q}(x, \xi, t) + E^{q}(x, \xi, t) \right) dx$$

$$\frac{1}{2} = J^q + J^g = \frac{1}{2} \Delta \Sigma + L^q + J^g$$
 Ji PRL78 (1997)

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Omega + \Delta G + \Omega = \frac{1}{2}$$
 Jaffe and Manohar NPB337 (1990)

 $1/2 \Delta \Sigma \sim 0.15$ well know from DIS/SIDIS

 $\Delta G \sim 0.2$ known from SIDIS/pp

Land & unknown

Lattice: Alexandrou et al. PRL119(2017)142002 J^u =0.31 J^d =0.05 J^s =0.05 $\frac{1}{2}\Delta\Sigma$ =0.20 L^q =0.21 J^g =0.13

The DVCS experiment at COMPASS

Two stage magnetic spectrometer for large angular & momentum acceptance Particle identification with:

- Ring Imaging Cerenkov Counter
- Electromagnetic calorimeters (ECAL1 and ECAL2)
- Hadronic calorimeters
- Hadron absorbers

The DVCS experiment at COMPASS

Selection of exclusive evts with recoil detection DVCS : μ $p \rightarrow \mu'$ $p \gamma$

Reconstructed vertex in the target volume

1 single photon with energy above DVCS threshold: $E\gamma$ in $Ecal_{0.1,2} > 4,5,10$ GeV

1 proton candidate $0.08 \text{ GeV}^2 < |t| < 0.64 \text{ GeV}^2$

Comparison between the proton observables measured by CAMERA or reconstructed by the spectro

In this bin $x_B > 0.03$ or 10 < v < 32GeV there is a sizeable π^0 contamination

Impact of the 160 GeV beam energy on DVCS+BH

 $d\sigma \alpha |T^{BH}|^2 + Interference Term + |T^{DVCS}|^2$

MC: — BH normalisation based on integrated luminosity π° background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

DVCS amplitude studied via the Interference

DVCS dominates Study of $d\sigma^{DVCS}$ /dt

Azimuthal dependence of BH+DVCS with Unpol Target

$$\frac{\mathrm{d}^4 \sigma(\ell p \to \ell p \gamma)}{\mathrm{d} x_B \mathrm{d} Q^2 \mathrm{d} |t| \mathrm{d} \phi} = \mathrm{d} \sigma^{BH} + \left(\mathrm{d} \sigma^{DVCS}_{unpol} + P_\ell \, \mathrm{d} \sigma^{DVCS}_{pol} \right) + \left(\mathbf{e}_\ell \mathrm{Re} \, I + \mathbf{e}_\ell P_\ell \, \mathrm{Im} \, I \right)$$

$$\begin{array}{|c|c|} \Sigma & \Sigma \\ \Sigma & \Sigma \\ \Delta & \Delta \\ \Sigma & \Delta \\ \Delta & \Sigma \\ \Leftrightarrow & \downarrow \\ e - & \downarrow \pm \\ \end{array}$$

$$\begin{array}{lll} \mathrm{d}\sigma^{BH} & \propto & c_0^{BH} + c_1^{BH}\cos\phi + c_2^{BH}\cos2\phi \\ \mathrm{d}\sigma^{DVCS}_{unpol} & \propto & c_0^{DVCS} + c_1^{DVCS}\cos\phi + c_2^{DVCS}\cos2\phi \\ \mathrm{d}\sigma^{DVCS}_{pol} & \propto & s_1^{DVCS}\sin\phi \\ & \mathrm{Re}~I & \propto & c_0^I + c_1^I\cos\phi + c_2^I\cos2\phi + c_3^I\cos3\phi \\ & \mathrm{Im}~I & \propto & s_1^I\sin\phi + s_2^I\sin2\phi \end{array}$$

 $s_1^I = Im \mathcal{F}$ $c_1^I = Re \mathcal{F}$

$$\mathbf{F} = F_1 \mathbf{H} + \xi (F_1 + F_2) \mathbf{H} - t/4m^2 F_2 \mathbf{E} \quad \stackrel{\text{at small } \mathbf{x}_B}{\longrightarrow} \quad F_1 \mathbf{H} \quad \text{for proton}$$

NB: to extract \mathcal{E} use a neutron (deuteron) target or a transversely pol. target to extract \mathcal{H} use a longitudinally polarized target

integrated DVCS cross section

At COMPASS with polarized positive and negative muon beams:

$$S_{CS,U} = d\sigma \stackrel{+}{\longleftrightarrow} + d\sigma \stackrel{-}{\Longrightarrow} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + Im I]$$

$$= 2[d\sigma^{BH} + c_1^{DVCS}] + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^{I} \sin \phi + s_2^{I} \sin 2\phi]$$
Calculable

All the other terms are cancelled in the integration over phi

0.22

0.08

can be subtracted

$$\frac{\mathrm{d}^{3}\sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^{2}\mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \; (\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}) \propto c_{0}^{DVCS} \stackrel{\text{O}}{=} 0.64$$

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^2, \nu, E_\mu)} \frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt}$$

Flux for transverse virtual photons

 $Q^2 (GeV/c)^2$

Sea quark imaging @ COMPASS

$$d\sigma^{DVCS}/dt = e^{-B|t|}$$

$$B = (4.31 \pm 0.62_{\text{stat}} + 0.09_{\text{sys}}) (\text{GeV}/c)^{-2}$$

$$\sqrt{\langle r_{\perp}^2 \rangle} = (0.58 \pm 0.04_{\text{stat}} + 0.01_{\text{sys}}) \,\text{fm}$$

Transverse extension of partons in the proton

Comparison to GPD models

The grey band is a global fit of CFF in the PARTON framework at LO and LT using a GPD parametrization (only valence and sea quarks)

GK includes gluons (at next order in α_s)

Manifestation of gluons or NLO

What will come next?

- 4 weeks in 2012
- 2 years of data in 2016-17 10 times more stat

At COMPASS with polarized positive and negative muon beams:

$$S_{cs,U} \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$

The sum of DVCS x-sections at small x_B mostly sensitive to $Im\mathcal{H}(\xi,t)$

→ transverse extension of partons

$$\mathcal{D}_{cs,U} \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow}$$

The difference of DVCS x-section at small x_B mostly sensitive to $Re\mathcal{H}(\xi,t)$

 $Im \mathcal{H}(\xi,t) + Re \mathcal{H}(\xi,t) \Rightarrow D$ -term and pressure distribution

Beam Charge and Spin Diff. @ COMPASS

$$\mathcal{D}_{CS,U} \equiv d\sigma^{+} - d\sigma^{-} = 2[d\sigma_{pol}^{DVCS} + \text{Re } I] \xrightarrow{L.T.} c_0^{I} + c_1^{I} \cos \phi$$

 $\Re \mathcal{H} > 0$ at H1 < 0 at HERMES Value of x_B for the node?

$$c_1^I = Re F_1 \mathcal{H}$$

Predictions with VGG KM10

OMPASS 2 years of data Eµ= 16

Eμ= **160 GeV**

 $1 < Q^2 < 8 \text{ GeV}^2$

And for the GPD E, the holy grail for Orbital Angular Momentum?

Lol for the future after 2022

Possible recoil detection with the COMPASS polarized target

A recoil proton detector is mandatory to ensure the exclusivity. A Silicon detector is included between the target surrounded by the modified MW cavity and the polarizing magnet

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$

3 cylindrical layers of Silicon det. are included in ~18cm

A technology developed at JINR for NICA for the BM@N experiment

DVCS with 160 GeV pol. μ⁺ & μ⁻ beams and Transv Pol target

Now HEMP, $pseudo-scalar\ meson\ \pi^{0}$ $vector\ mesons\ \rho\ and\ \omega$

GPDs and Hard Exclusive Meson Production

Quark contribution

Gluon contribution at the same order in α_s

The Meson Distribution Amplitude Is an additional non-perturbative term 4 chiral-even GPDs: helicity of parton unchanged

$$H^q(x, \xi, t)$$
 $E^q(x, \xi, t)$ For Vector Meson

$$\widetilde{H}^{q}(x, \xi, t)$$
 $\widetilde{E}^{q}(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\mathbf{H}_{\mathsf{T}}^{q}(x, \xi, \mathsf{t}) \quad \mathbf{E}_{\mathsf{T}}^{q}(x, \xi, \mathsf{t})$$

$$\mathbf{H}_{\mathsf{T}}^{q}(x, \xi, \mathsf{t})$$
 $\mathbf{E}_{\mathsf{T}}^{q}(x, \xi, \mathsf{t})$ $\mathbf{\tilde{E}}_{\mathsf{T}}^{q}(x, \xi, \mathsf{t})$

$$\overline{\mathbf{E}_{\mathsf{T}}^{q}} = \mathbf{2} \ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q} + \mathbf{E}_{\mathsf{T}}^{q}$$

GPDs

small

Factorisation proven only for σ_1 (σ_T suppressed by $1/Q^2$) but the diagram with these helicities is possible and is expressed with transversity GPDs

Exclusive π^0 production on unpolarized proton

e p
$$\rightarrow$$
 e π^0 p $\frac{d^2\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \text{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \text{ Leading twist should be dominant but } \approx \text{ only a few \% of } \frac{d\sigma_T}{dt}$$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \right) \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{E}_T \rangle \right|^2 \right]$$

$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_{\pi}}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right]$$

$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_{\pi}^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{E}_T \rangle \right|^2$$

A large impact of $\overline{E_T}$ should be clearly visible in σ_{TT} and in the dip at small |t| of σ_T

Exclusive π^0 production on unpolarized proton

$$\frac{d^2\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

Exclusive π^0 production on unpolarized proton

The GK model estimates better the data but with a different shape

Exclusive p⁰ production with transversely polarized target

$$\begin{split} &\left[\frac{\alpha_{\text{em}}}{8\pi^3} \frac{y^2}{1-\varepsilon} \frac{1-x_B}{x_B} \frac{1}{Q^2}\right]^{-1} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{Bj} \mathrm{d}Q^2 \mathrm{d}t \mathrm{d}\phi \mathrm{d}\phi_s} \\ &= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--}\right) + \varepsilon \overline{\sigma_{00}^{++}} \varepsilon \cos(2\phi) \operatorname{Re}\sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos\phi \operatorname{Re}(\sigma_{+0}^{++} + \sigma_{+0}^{--}) \\ &- P_\ell \sqrt{\varepsilon(1-\varepsilon)} \sin\phi \operatorname{Im}(\sigma_{+0}^{++} + \sigma_{+0}^{--}) \end{split}$$

$$-S_{7}\left[\frac{\sin(\phi-\phi_{S})\operatorname{Im}(\sigma_{++}^{+-}+\varepsilon\sigma_{00}^{+-})+\frac{\varepsilon}{2}\sin(\phi+\phi_{S})\operatorname{Im}\sigma_{+-}^{+-}+\frac{\varepsilon}{2}\sin(3\phi-\phi_{S})\operatorname{Im}\sigma_{+-}^{-+}}{\sin(3\phi-\phi_{S})\operatorname{Im}\sigma_{+-}^{-+}}\right]$$

transv. polar.^L

target

$$+\sqrt{\varepsilon(1+\varepsilon)}\sin\phi_{S}\ln\sigma_{+0}^{+-}+\sqrt{\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})\ln\sigma_{+0}^{-+}$$

$$+S_T P_{\ell} \left[\sqrt{1-\varepsilon^2} \cos(\phi - \phi_S) \operatorname{Re} \sigma_{++}^{+-} \right]$$

transv. polar.

target +
$$-\sqrt{\varepsilon(1-\varepsilon)}\cos\phi_S\operatorname{Re}\sigma_{+\cdot 0}^{+-} + \sqrt{\varepsilon(1-\varepsilon)}\cos(2\phi - \phi_S)\operatorname{Re}\sigma_{+0}^{-+}$$

long. polar.

beam

for nucleon helicity for photon helicity

Dominant interference terms:

then LT
$$\gamma^*_L \rightarrow \rho^0_L$$

 $\gamma^*_T \rightarrow \rho^0_L$

exclusive ρ^0 production with Transv. Polar. Target

$$\mu p \rightarrow \mu' + \rho^0 + p_{\text{non detected}}$$
 $\rightarrow \pi^+\pi^-$

COMPASS 2007-2010, without recoil detector

exclusive ρ^0 production with Transv. Polar. Target

COMPASS 2007-2010, without recoil detector

exclusive ρ^0 production with Transv. Polar. Target

$$\mu p \rightarrow \mu' + \rho^0 + p_{\text{non detected}}$$

Comparison with a phenomenological GPD-based model

Goloskokov and Kroll (EPJ C74 (2014))

- Phenomenological 'handbag' approach
- ▶ Includes twist-3 ρ^0 meson wave functions
- Includes contributions from $\gamma_{\rm L}^*$ and $\gamma_{\rm T}^*$

Large contribution of the GPDs E and H_T

COMPASS, PLB731 (2014) 19

exclusive ω production with Transv. Polar. Target

$$\mu p \rightarrow \mu' + \omega + p_{\text{non détecté}}$$
 $\rightarrow \pi^+\pi^-\pi^0$

GK model predictions (EPJ A50 (2014)) including all the GPDs and transverse GPDs

igoplus the pion pole exchange which is large for ω production

- positive $\pi\omega$ form factor
- no pion pole
- negative $\pi\omega$ form factor

no unambigous determination of the sign

exclusive ω production with Unpolarised Target and SDME

Spin density matrix elements are bilinear combinations of the helicity amplitudes $F(\gamma^*(\lambda_{V}) \rightarrow V(\lambda_{V}))$

$$F(\gamma^*(\lambda_{\gamma}) \to V(\lambda_{\vee}))$$

$$\lambda_V = \pm 1$$
, 0

$$\rho_{\lambda_{V}\lambda'_{V}}^{\alpha} = \frac{1}{2\mathcal{N}} \sum_{\substack{\lambda_{\gamma}\lambda'_{\gamma}\lambda_{N}\lambda'_{N} \\ \lambda_{\gamma}\lambda'_{\gamma}\lambda'_{N}}} F_{\lambda_{V}\lambda'_{N};\lambda_{\gamma}\lambda_{N}} \left[\varrho_{\lambda_{\gamma}\lambda'_{\gamma}}^{U+L} F_{\lambda'_{V}\lambda'_{N};\lambda'_{\gamma}\lambda_{N}}^{*} \right]$$

9 cases for the photon: transversely (unpol, lin in 2 \perp dir, circ) α = 0 ÷ 3

longitudinally α = 4

interferences α = 5 ÷ 8

$$r^{\alpha}_{\lambda_V \lambda_V'} \propto \rho^{\alpha}_{\lambda_V \lambda_V'} / (1 + \varepsilon R)$$
 $r^{04}_{\lambda_V \lambda_V'} \propto (\rho^0_{\lambda_V \lambda_V'} + \varepsilon R \rho^4_{\lambda_V \lambda_V'}) / (1 + \varepsilon R)$

If transverse and longitudinal photons

are not separated $R = \sigma_i/\sigma_T$

$$R = \sigma_{L}/\sigma_{T}$$

GOAL: test of s-channel helicity conservation $(\lambda_v = \lambda_v)$

in GPD models: SCHC-violation $\gamma_T \rightarrow V_L$ implies quark helicity flip or transverse GPDs decomposition of F into Natural (N) Parity and Unnatural (U) Parity exchange amplitude

> in Regge framework NPE: $J^P = (0^+, 1^-, ...)$ (pomeron, ρ , ω , a_2 ... reggeons) UPE: $J^P = (0^-, 1^+, ...) (\pi, a_1, b_1... \text{ reggeons})$

exclusive ω production with Unpolarised Target and SDME

 ω production plane

experimental angular distributions

$$\mathcal{W}^{U+L}(\Phi,\phi,\cos\Theta) = \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) + P_b \mathcal{W}^{L}(\Phi,\phi,\cos\Theta)$$

15 'unpolarized' and 8 'polarized' SDMEs

$$\mathcal{W}^{U}(\Phi,\phi,\cos\Theta) = \frac{3}{8\pi^{2}} \left[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{04}\}\sin 2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta\cos\phi - r_{1-1}^{04}\sin\phi - r_$$

exclusive ω production with Unpolarised Target and SDME

 $1 < Q^{2} < 10 \text{ GeV}^{2}$ $< Q^{2} > = 2.13 \text{ GeV}^{2}$ 5 < W < 20 GeV < W > = 7.6 GeV $0.01 < p_{T}^{2} < 0.5 \text{ GeV}^{2}$ $< p_{T}^{2} > = 0.16 \text{ GeV}^{2}$

CAMERA not used in this analysis

Unbinned ML fit to experimental angular distributions taking into account acceptance and fraction of background

23 SDMEs in 5 classes A, B, C, D, E depending on helicity transitions

SDMEs dependent on beam polarisation Shown within shaded areas

Test of s-channel helicity conservation

SCHC
$$(\lambda_{\gamma} = \lambda_{\mathbf{V}})$$

SCHC implies:

•
$$r_{1-1}^1 + \operatorname{Im} r_{1-1}^2 = 0$$

= -0.010 ± 0.032 ± 0.047 OK

• Re
$$r_{10}^5 + \text{Im}_{10}^6 = 0$$

= 0.014 ± 0.011 ± 0.013 OK

• Im
$$r_{10}^7$$
 - Re r_{10}^8 = 0
= -0.088 ± 0.110 ± 0.196 OK

• all elements of classes C, D, E should be 0 for $\gamma^*_{\ L}\!\to\omega_{\rm T}$ and $\gamma^*_{\ T}\!\to\omega_{\rm -T}$ OK within errors

not obeyed for transitions $\gamma^*_{\ T}\!\rightarrow\omega_L$

Transition $\gamma^*_{\mathsf{T}} \rightarrow \omega_{\mathsf{L}}$

possible GPD interpretation

Goloskokov and Kroll, EPJC 74 (2014) 2725

$$r_{00}^{5} \propto \text{Re}\left[\langle \overline{E}_{T} \rangle_{LT}^{*} \langle H \rangle_{LL} + \frac{1}{2} \langle H_{T} \rangle_{LT}^{*} \langle E \rangle_{LL}\right]$$

COMPASS preliminary

Unnatural parity exchange contribution

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$$

$$= \sum_{\lambda N \lambda'} \frac{4\epsilon |U_{1\lambda'N}^{0\lambda}|^{2} + 2|U_{1\lambda'N}^{1\lambda}|^{2} + U_{-1\lambda'N}^{1\lambda}|^{2}}{N}$$

⇒ UPE contribution

COMPASS preliminary

possible GPD interpretation Goloskokov and Kroll, EPJA 50 (2014) 146

contribution of amplitudes depending on helicity GPDs $\ \widetilde{E}$, \widetilde{H}

the former parameterised predominantly by pion-pole exchange

The past and future DVCS experiments

Conclusions

From 2016-17 data

sum and difference of DVCS x-sections with polarized μ + and μ -

- \rightarrow transverse extension of partons as a function of x_B
- \rightarrow Im $\mathcal{H}(\xi,t)$ and Re $\mathcal{H}(\xi,t)$ for D-term and pressure distribution

HEMP π^0 , ρ , ω , ϕ , $J/\psi \rightarrow$ transverse GPDs - universality of GPDs - flavor decomposition

Program starting in 2022

Letter of Intent Draft 1.0: https://arXiv.org/abs/1808.00848

New collaborators are welcome, sign up here:

https://nqf-m2.web.cern.ch

Letter of Intent - Draft 1.0: https://arXiv.org/abs/1808.00848

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^\pm	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive reactions	GPD E	160	2·10 ⁷	10	μ^\pm	NH ₃ [↑]	2022 2 years	recoil silicon, modified PT magnet
Input for Dark Matter Search	p production cross section	20-280	5 · 10 ⁵	25	p	LH2, LHe	2022 1 month	LHe target
p -induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	<u>p</u>	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^\pm	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	108	25-50	K^{\pm}, \overline{p}	NH₃ [↑] , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 10 ⁶	> 10	<i>K</i> -	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	$K^{\pm} \over \pi^{\pm}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm},π^{\pm}	from H to Pb	2026 1 year	

Program starting in 2022

Beam line unique with polarised μ + and μ and high intensity pion beam

Possible RF separated beam for high intensity antiproton and K beams

Versatile apparatus (Upgrade ++)

Proton Radius

Meson PDF – gluon PDF

Proton spin structure

3D imaging (TMDs and GPDs)

Hadron spectroscopy

Anti-matter cross section

SPARES

Valence quark imaging at Jlab and HERMES

Fit of 8 CFFs at L.O and L.T.

Dupré, Guidal, Vanderhaeghen, PRD95, 011501(R)(2017) Dupré, Guidal, Nicolai, Vanderhaeghen, arXiv: 1704.07330

$$s_1^I = Im F_1 \mathcal{H}$$

- \square CLAS σ and $\Delta \sigma$
- \triangle HallA σ and $\Delta \sigma$
- CLAS A_{UL} and A_{LL}
- ★ VGG model

proton tomography or parton distributions in tranv plane

Unpol. DVCS x-section at small x_B mostly sensitive to $Im\mathcal{H}(\xi,t) \propto H(\xi,\xi,t)$ and $\xi \sim x_B/2$

$$d\sigma_{DVCS}/dt \alpha e^{-B'|t|} \rightarrow \langle r_{\perp}^{2}(x_{B}) \rangle \approx 2B'(x_{B})$$

$$\langle b_{\perp}^2(x) \rangle^f = -4 \frac{\partial}{\partial t} \ln H^f(x, 0, t) \Big|_{t=0}$$

$$H(x,0,t) \alpha e^{-B_0(x)|t|} < b_{\perp}^2(x) > = 4B_0(x)$$
Model
 $H(x=\xi,\xi,t) \alpha e^{-B(\xi)|t|} < r_{\perp}^2(\xi) > = 4B(\xi)$ dependent

Present knowledge of the GPD H in global analysis

Im H
is rather
well known

Re H linked to the dterm is still poorly constrained

KM15 K Kumericki and D Mueller <u>arXiv:1512.09014v1</u> **GK** S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011)

Present knowledge of the GPD E in global analysis

KM15 K Kumericki and D Mueller <u>arXiv:1512.09014v1</u> GK S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011)

Possible recoil detection with the COMPASS polarized target

A recoil proton detector is mandatory to ensure the exclusivity. A Silicon detector is included between the target surrounded by the modified MW cavity and the polarizing magnet

Modified MW as thin as possible 0.2-0.6mm thick copper foil

3 cylindrical layers of Silicon det. are included in ~18cm

No possibility for ToF

PID of p/ π with dE/dx

momentum (as low as possible)

and trajectory measurments

Environment:

- Magnetic field (long and transv) 0.5-2T
- Presence of MW field temporary
- A low temperature 5-10K
- A vacuum of about 10⁻⁶ mm Hg

Operation of SI and evacuation of the heat of the read out electronics:

SI detectors in a separate block warmed at \sim 70K and "warm" chips fixed on the flange at the room temp (use of 1.25m long flat aluminium-polyimide multilayer flexible buses)

A technology developed at LHEP at JINR for NICA

Silicon detector unit with electronics developed for BM@N experiment.

Performances studied in MC

New Silicon detector with NH3 target

tmin

NH3 target radius 20mm

MW Cavity thickness 0.6 mm 1^{st} SI det thickness 300 μ m 2^{nd} SI det thickness 1000 μ m

-tmin= 0.092 GeV² Pp=306.7 MeV/c Combined eff (μ p γ) = 40%

CAMERA with LH2 target

-tmin= 0.066 GeV² Pp=258.5 MeV/c Combined eff (μ p γ) = 56%

DVCS with 160 GeV pol. μ⁺ & μ⁻ beams and Transv Pol target

$$S_{CS,T} \equiv \Delta \sigma_{T} (\mu^{+\downarrow}) + \Delta \sigma_{T} (\mu^{-\uparrow})$$

$$\rightarrow$$
 (- Re \mathcal{E} Im \mathcal{H} + Im \mathcal{E} Re \mathcal{H})sin(ϕ - ϕ s)

 $\mathcal{A}_{\mathbf{5}}^{\, ext{sin}(oldsymbol{\phi-}\,oldsymbol{\phi s})}$

From Pawel Sznajder
Using the PARTONS code
Formalism at LO

----- Idem with GPDs E = 0

----- Idem with GPDs E = 0

Exclusive π^0 production on unpolarized proton

SIDIS background estimation

- use LEPTO MC to describe non exclusive background
- use exclusive π^0 MC to describe signal contribution
- find best description of data
 - in signal region (only two photon clusters)
 - in background region (more photon clusters)

Selection of exclusive evts without recoil detection

 μ p in NH3 \rightarrow μ' V p non detected

