Wide-angle ^photoproduction of ^pions

P. Kroll

Fachbereich Physik, Universität Wuppertal Primosten, September ²⁰¹⁸

Outline:

- •The Handbag factorization for wide-angle processes
- •Wide-angle Compton scattering
- •Wide-angle ^photoproduction of ^pions
- •The twist-3 contribution to ^photoproduction
- •Results
- •The 2-particle twist-3 DAs
- •Summary

The handbag factorization

WIDE-ANGLE e.g. RCS or photoproduction of mesons arguments for factorization at large Mandelstam variables $s, -t, -u$

complementary: GPDs at small $-t$ in deep virtual and GPDs at large $-t$ in wide-angle processes $^2\ll1$

The handbag contribution to WACS (and WAPP)

 $s,-t,-u\gg \Lambda^2$ $\Lambda \sim \mathcal{O}(1{\rm GeV})$ typical hadronic scale

- work in ^a symmetric frame: (otherwise additional contr.) $p^{(\prime)} = [p^+$, m^2 $\frac{2-t}{2}$ 4 $2p^+$ $\frac{-(t/4)}{t}$, $\pm \mathbf{\Delta}_\perp$] $\xi = \frac{(p}{(p)}$ $\frac{p}{2}$ ′) $\, + \,$ $\frac{(p-p^r)^+}{(p+p')^+}=0 \qquad t=-\Delta_\perp^2$ ⊥
- assumption:

parton virtualities k_i^2 $\hat{i}_i^2<\Lambda^2$), intrinsic transverse momenta k_\perp^2 $\frac{2}{\perp i}/x_i < \Lambda^2$

• consequences

 $\hat{s}=(k_j+q)^2\simeq (p+q)^2=s$ active partons approxim $\hat{u} = (k'_j - q)^2 \simeq (p' - q)^2$ $2 \simeq (p+q)^2$ and $x_j , x'_j \simeq 1$ $2\simeq (p'-q)^2$

propagators poles avoided $z^2=s$ active partons approximately on-shell $z^2=u$ collinear with parent hadrons

• physical situation: hard photon-parton scattering andsoft emission and reabsorption of partons by hadrons

The Compton amplitudes

Radyushkin hep-ph/9803316; DFJK hep-ph/9811253; Huang-K.-Morii hep-ph/0110208(light-cone helicities)

$$
\mathcal{M}_{\mu'+,\mu+} = 2\pi \alpha_{\text{elm}} \left\{ \mathcal{H}_{\mu'+,\mu+}^{\gamma} \left[R_V^{\gamma} + R_A^{\gamma} \right] + \mathcal{H}_{\mu'-,\mu-}^{\gamma} \left[R_V^{\gamma} - R_A^{\gamma} \right] \right\}
$$

$$
\mathcal{M}_{\mu'-,\mu+} = \pi \alpha_{\text{elm}} \frac{\sqrt{-t}}{m} \left\{ \mathcal{H}_{\mu'+,\mu+}^{\gamma} + \mathcal{H}_{\mu'-,\mu-}^{\gamma} \right\} R_T^{\gamma}
$$

form factors: $R_i^{\gamma}(t)=\sum_a e_a^2$ $^2_aR^a_i$ $\frac{a}{i}(t)$

$$
R_V^a = \int_0^1 \frac{dx}{x} H^{a_v}(x, \xi = 0, t) \qquad E^{a_v} \to R_T^a \qquad \widetilde{H}^{a_v} \to R_A^a
$$

 \widetilde{E} decouples at $\xi=0; \quad H^a$ \mathbf{w}_v $v=H^a$ $^a-H^{\bar{a}}$ (sea quarks neglected)

subprocess amplitudes:
$$
\mathcal{H}_{+++} = 2\sqrt{-s/u}
$$

 $\mathcal{H}_{-+-+} = 2\sqrt{-u/s}$ (+ NLO)

Analysis of nucleon form factors

need for Compton ffs, i.e. need for GPDs at large $-t$ deeply virtual processes provide GPDs only at small $-t$ but large $-t$ GPDs from nucleon ffs through sum rul $-t$ GPDs from nucleon ffs through sum rules:

$$
F_i^{p(n)} = e_u F_i^{u(d)} + e_d F_i^{d(u)}, \qquad F_i^a = \int_0^1 dx K_{iv}^a(x, \xi = 0, t)
$$

 $\mathsf{Dirac}\,\,(\mathsf{Pauli})\,\,\mathsf{ff}\colon\;\; K=H(E)\quad\,(\text{\rm normalization from}\,\,\kappa_a=\,$ axial form factor: \widetilde{H} (^κ anomalous magn. moment) \int_0^1 $\int_0^1 dx E_v^a$ $v_v^a(x,\xi=t=0)$ ansatz K^a_\cdot profile fct: $f^a_i = (B^a_i + \alpha^{\prime\,a}_i \ln 1/x) (1-x)^3$ $i_a^a(x,\xi=0,t) = k_i^a$ $_{i}^{a}(x)\exp\left[tf_{i}^{a}\right]$ $\binom{a}{i}(x)$ forward limits $H: q(x)$ $\widetilde{H}: \Delta q(x)$ $i^a_i = (B_i^a)$ $\alpha_i^a+\alpha_i^{\prime}$ $a \ln 1/x)$ (1 $(-x)^3$ $^3+A_i^a$ $\frac{a}{i}x(1$ $(x)^2$ $E\colon\, e_i = N_i x^{\alpha_i} (1-x)^{\beta_i}$ additional param DFJK hep-ph/0408173; update: Diehl-K, 1302.4604; (see also Guidal et al, hep-ph/0410252) $(-x)^{\beta_i}$ additional parameters fit to all data: $G^i_M,G^i_E/G^i_M$ $(i=p,n)$ and use of ABM11, DSSV09 parton densities strong $x-t$ correlation

(see also de Teramond et al (1801.09154))

Estimate of proton radius

Approx: distance between active parton and cluster of spectators

The Compton cross section

 $dt \$

$$
\frac{d\sigma}{dt} = \frac{d\hat{\sigma}}{dt} \left\{ \frac{1}{2} \frac{(s-u)^2}{s^2 + u^2} \left[R_V^2(t) + \frac{-t}{4m^2} R_T^2(t) \right] + \frac{1}{2} \frac{t^2}{s^2 + u^2} R_A^2(t) \right\} + \mathcal{O}(\alpha_s)
$$

$$
\frac{d\hat{\sigma}}{dt} = 2\pi \frac{\alpha_{\text{elm}}^2}{s^2} \left[-\frac{u}{s} - \frac{s}{u} \right]
$$

Klein-Nishina cross section

 $-t,-u > 2.5$ GeV 2 data: JLab E99-114 form factors from $\xi=0$ anlaysis

Photoproduction of ^pions

arguments for handbag factorization as for WACS $\qquad \, s, -t, -u \gg \Lambda^2$

leading-twist contribution

$$
\mathcal{M}_{0+\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \mathcal{H}_{0\lambda\mu\lambda}^{\pi} \left[R_V^{\pi} + 2\lambda R_A^{\pi} \right]
$$

$$
\mathcal{M}_{0-\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \frac{\sqrt{-t'}}{2m} \mathcal{H}_{0+\mu+}^{\pi} R_T^{\pi}
$$

$$
R_i^{\pi^0} = \frac{1}{\sqrt{2}} \left[e_u R_i^u - e_d R_i^d \right] \qquad R_i^{\pi^+} = R_i^{\pi^-} = R_i^u - R_i^d
$$

 same flavor form factors as for WACStwist-2 subprocess amplitude

a)

60000000

 known, universality $(\langle 1/\tau \rangle_\pi=$ $\int d\tau / \tau \Phi_{\pi} (\tau))$

$$
\mathcal{H}_{0\lambda\mu\lambda}^{\pi^0} = 2\pi\alpha_{\rm s}f_{\pi} \frac{C_F}{N_C} \langle 1/\tau \rangle_{\pi} \sqrt{-t/2} \frac{(1+\mu)s - (1-\mu)u}{su}
$$

cross section too small by factor $50 - 100$ Huang-K., hep-ph/0005318

 $\it i$

Photoproduction: Transversity GPDs?

 Huang-Jakob-K-Passek-Kumericki, hep-ph/0309071 H_T, E_T transversity GPDs go along with r, \widetilde{H} $\, T \,$ \tilde{T},\tilde{E} $T\qquad (\bar{E}_T = 2 \widetilde{H}_T + E_T)$ twist-3 pion wave functions fed subprocess ampl. $\mathcal{H}_{0-\mu+}$ $_+$ and ${\cal H}_{0+\mu-}$

projector $q\bar{q}\rightarrow\pi$ (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01) $\sim q' \cdot \gamma \gamma_5 \Phi$ definition: $\langle \pi^+(q') \mid \bar{d}(x)\gamma_5 u(-x) \mid 0 \rangle = i f_\pi \mu_\pi \int d\tau \mathrm{e}^{i q' x \tau}$ $^\prime\cdot\gamma\gamma_5\Phi+\mu_\pi\gamma_5$ $\sqrt{}$ $\Phi_P-\imath\sigma_{\mu\nu}\Big($ \overline{q} $^{\prime\,\mu}k$ ′ν $q^{\prime}\!\cdot\! k^{\prime}$ Φ′ σ $\frac{\sigma}{6}+q$ μ Φσ 6∂ $\frac{\partial}{\partial \mathbf{k_{\perp}}_\nu} \bigg) \bigg]$ local limit $x\to 0$ related to divergency of axial vector current ${}^\tau \Phi_P(\tau)$ $\Longrightarrow \mu_{\pi}=m_{\pi}^{2}$ Eq. of motion: $\tau \Phi_P = \Phi_\sigma / N_c$ $\frac{2}{\pi}/(m_u+m_d)\simeq 2\,\text{GeV}$ at scale $2\,\text{GeV}$ $(\int d\tau \Phi_P(\tau)=1)$: $\Phi_P = 1, \quad \Phi_\sigma = \Phi_{AS} = 0$ $-\,\tau \Phi_{\sigma}^{\prime}/(2N_c)$ solution:σ $\sigma = \Phi_{AS} = 6\tau(1$ $-\tau)$ Braun-Filyanov (90)

(WW approx.)

$$
\boxed{\implies \qquad \mathcal{H}_{0-\mu+}=\mathcal{H}_{0+\mu-}=0}
$$

to be contrasted with electroproduction of pions:

- the subprocess amplitudes inWW appr. are non-zero
- contribute to transversely polarized photons
- – dominate the cross section for π^0 production
- –in agreement with experiment

Pion ^photoproduction again

K.-Passek-Kumericki, (1802.06597)

In view of situation in electroproduction:

include full twist-3 contribution $(q\bar{q}\,+\,q\bar{q}g$ Fock components of the pion) both are needed in order to achieve gauge invariance they are related by eq. of motion (with light-cone gauge $A^+=0)$:

$$
\bar{\tau}\Phi_p - \frac{1}{6}\bar{\tau}\Phi_{\sigma}' - \frac{1}{3}\Phi_{\sigma} = 2\frac{f_{3\pi}}{f_{\pi}\mu_{\pi}} \int_0^{\tau} \frac{d\tau_g}{\tau_g} \Phi_{3\pi}(\tau - \tau_g, \bar{\tau}, \tau_g) = \Phi_1^{EOM}(\tau)
$$

$$
\tau \Phi_p + \frac{1}{6} \tau \Phi_\sigma' - \frac{1}{3} \Phi_\sigma = 2 \frac{f_{3\pi}}{f_\pi \mu_\pi} \int_0^{\bar{\tau}} \frac{d\tau_g}{\tau_g} \Phi_{3\pi}(\tau, \bar{\tau} - \tau_g, \tau_g) = \Phi_2^{EOM}(\tau)
$$

for pions: $\Phi_1^{EOM}(\tau)$ $f_{3\pi} = f_{3\pi}(\mu_R^2)$ $\mu_{\pi} = \mu_{\pi}(\mu_R)$ $(\tau) = \Phi_2^{EOM}$ $\frac{EOM}{2}(\bar{\tau})$ $(\bar{\tau}=1)$ $-\,\tau)$ $\mu_\pi\,=\,\mu_\pi(\mu_P^2)$ $\frac{2}{R})$

π^0 subprocess amplitudes

Qiu(90) DIS

twist-3 3-particle projector $(q\bar qg\to\pi)$

$$
\mathcal{P}_{3,fg}^{\beta,c} = \frac{i}{g} \frac{f_{3\pi}}{2\sqrt{2N_C}} \frac{(t^c)_{fg}}{C_F \sqrt{N_C}} \frac{\gamma_5}{\sqrt{2}} \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu\beta} \frac{\Phi_{3\pi}(\tau_a, \tau_b, \tau_g)}{\tau_g} \qquad g_{\perp}^{\nu\beta} = g^{\nu\beta} - \frac{k'^{\nu} g'^{\beta} + q'^{\nu} k'^{\beta}_j}{k'_j \cdot q'}
$$

The ^photoproduction amplitudes

$$
\mathcal{M}_{0+\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \left\{ \mathcal{H}_{0\lambda\mu\lambda}^{\pi} \left[R_V^{\pi} + 2\lambda R_A^{\pi} \right] - 2\lambda \frac{\sqrt{-t}}{2m} \mathcal{H}_{0-\lambda\mu\lambda}^{\pi} \bar{S}_T^{\pi} \right\}
$$

$$
\mathcal{M}_{0-\mu+}^{\pi} = \frac{e_0}{2} \sum_{\lambda} \left\{ \frac{\sqrt{-t}}{2m} \mathcal{H}_{0\lambda\mu\lambda}^{\pi} R_T^{\pi} - 2\lambda \frac{t}{2m^2} \mathcal{H}_{0-\lambda\mu\lambda}^{\pi} S_S^{\pi} \right\} + e_0 \mathcal{H}_{0-\mu+}^{\pi} S_T^{\pi}
$$

form factors S_i are $1/x$ moments of transversity GPDs

 $light-cone$ helicities, transform to ordinary helicities $Diehl(01)$

$$
\Phi_{0\nu',\mu\nu} = \mathcal{M}_{0\nu',\mu\nu} + \frac{1}{2} \kappa \Big[(-1)^{1/2 - \nu'} \mathcal{M}_{0-\nu',\mu\nu} + (-1)^{1/2 + \nu} \mathcal{M}_{0\nu',\mu-\nu} \Big] + \mathcal{O}(m^2/s)
$$
\n
$$
\kappa = \frac{2m}{\sqrt{s}} \frac{\sqrt{-t}}{\sqrt{s} + \sqrt{-u}}
$$
\nrelevant for spin effects

Form factors

in addition to R_V, R_A, R_T : transversity FFs (skewness $=$ 0)

$$
S_T^a(t) = \int_{-1}^1 \frac{dx}{x} \operatorname{sign}(x) H_T^a(x,t), \quad \bar{S}_T^a(t) \to \bar{E}_T^a(x,t), \quad S_S^a(t) \to \widetilde{H}_T^a(x,t),
$$

only valence quarks contribute (charge conjugation symmetry) $F_i^{\pi^0} = (e_u F_i^a - e_d F_i^d)/\sqrt{2}$

from electroproduction: $\frac{H_T}{\sim}$ \bar{E}_T known at small $-t$ \widetilde{H} $\scriptstyle T$ τ_T unknown, suppressed by $-t/(4m^2)$

extrapolation to large $-t$: by term $Ax(1-x)^2$ in profile fct. with $A\simeq 0.5\,{\rm GeV}^{-2}$ and $S_S^{\pi^0}\simeq \bar{S}_T^{\pi^0}/2$

The 3-particle twist-3 ^pion DA

$$
\Phi_{3\pi} = 360\tau_a \tau_b \tau_g^2 \left[1 + \omega_{10} (\mu_R^2)(7\tau_g - 3)/2 + \omega_{20} (\mu_R^2)(2 - 4\tau_a \tau_b - 8\tau_g + 8\tau_g^2) + \omega_{11} (\mu_R^2)(3\tau_a \tau_b - 2\tau_g + 3\tau_g^2) + \dots \right]
$$

(expansion in ^a series of Jacobi polynomials; coeff. evolve with scale)

Braun-Filyanov (90), Chernyak-Zhitnitsky(84)

choice: μ_{I}^{2} $R^2=R^2_F$ $\frac{2}{F}= tu/s$

Helicity correlation A_{LL} and K_{LL} in WACS

Klein-Nishina result $\hat{A}_{LL}=\hat{K}_{LL}=\frac{s}{s}$ $A_{LL}\,=\,K_{LL}\simeq\,\hat{A}_{LL}\,\frac{R}{R}$ 2 $-u$ 2 s^2+u^2 A R_V

JLab E99-114 ($s=6.9$ GeV 2 JLab E07-002 ($s=7.8$ GeV 2 $t=-2.1$ GeV $^{\circ}$ $u=-1.04$ GeV 2 $^{2})$ application of handbag mechanism is at the limits $t=-2.1$ GeV 2 $^2)$ R_A badly known since F_A badly known, old data for $\mathsf{MINERvA?}$ or K_{LL} from Jlab? $-t$ $<$ ∼ $\lesssim\!2\,\text{GeV}^2$ Kitagaki (83)

Helicity correlation in ^photoproduction

$$
A_{LL}^{twist-2} = K_{LL}^{twist-2}
$$
 as for WACS

$$
A_{LL}^{twist-3} = -K_{LL}^{twist-3}
$$

characteristic signature for dominance of twist-3 like $\sigma_T\gg\sigma_L$ in pion electroprod.

$$
A_{LL}^{twist-3} = -K_{LL}^{twist-3} = -4\frac{S_T^{\pi^0}}{F^{\pi^0}} \left[S_T^{\pi^0} - \frac{t}{2m^2} S_S^{\pi^0} + \kappa \frac{\sqrt{-t}}{2m} \bar{S}_T^{\pi^0} \right]
$$

$$
F^{\pi^0} = \frac{-t}{2m^2} \left[(\bar{S}_T^{\pi^0})^2 - \frac{t}{m^2} (S_S^{\pi^0})^2 + 4S_S^{\pi^0} S_T^{\pi^0} - 8\frac{m^2}{t} (S_T^{\pi^0})^2 \right]
$$

 K_{LL} data: Fanelli (15) (Hall A (05)) $s=7.8(6.9)\,\rm{GeV^2}$ ², t = $-2.1(u=-1.04)$ GeV²

The 2-particle twist-3 DAs

a combination of EOM is linear first order diff. equation for Φ_{σ}

solution:

$$
\Phi_{\sigma} = 6\tau\bar{\tau} \left(\int d\tau \frac{\bar{\tau}\Phi_1^{EOM} - \tau\Phi_2^{EOM}}{2\tau^2\bar{\tau}^2} + C \right)
$$

$$
\Phi_P = \frac{\Phi_{\sigma}}{6\tau\bar{\tau}} + \frac{\Phi_1^{EOM}}{2\tau} + \frac{\Phi_2^{EOM}}{2\bar{\tau}}
$$

local limit: $\langle \pi^+(q') \mid \bar{d}(0) \gamma_5 u(0) \mid 0 \rangle = i f_\pi \mu_\pi$ (\int_0^1 \Longrightarrow fixes constant of integration: $\int_{0}^{1} d\tau \Phi_{P}(\tau) = 1$

$$
C = 1 + \eta_3 (7\omega_{1,0} - 2\omega_{2,0} - \omega_{1,1}) \qquad (\eta_3 = f_{3\pi}/(f_{\pi}\mu_{\pi}))
$$

 $\Phi_P = 1 + \sum_{n=2,4,...} a$ $\, P \,$ ${P \over n} C_n^{(1/2)}$ $\binom{1}{2}^{(1/2)}(2\tau \left(-1\right)$ a $\, P \,$ $\frac{P}{2}=-\frac{10}{3}a$ $\, P \,$ $_4^P=\frac{10}{7}$ $\frac{10}{7}\eta_3(7\omega_{1,0}-2\omega_{2,0}-\omega_{1,1})$

$$
\Phi_{\sigma} = \eta_{\sigma} \tilde{\Phi}_{\sigma} \qquad \tilde{\Phi}_{\sigma} = 6\tau \bar{\tau} \left[1 + \sum_{n=2,4,...} a_{n}^{\sigma} C_{n}^{(3/2)} (2\tau - 1) \right]
$$
\n
$$
a_{2}^{\sigma} = \frac{1}{6} \frac{\eta_{3}}{\eta_{\sigma}} (12 + 3\omega_{1,0} - 4\omega_{2,0}) \qquad a_{4}^{\sigma} = \frac{1}{105} \frac{\eta_{3}}{\eta_{\sigma}} (22\omega_{2,0} - 3\omega_{1,1})
$$
\n
$$
\eta_{\sigma} = 1 - \eta_{3} (12 - 4\omega_{1,0} + \frac{8}{7} \omega_{2,0} + \frac{4}{7} \omega_{1,1}) \qquad \text{may be absorbed in } \mu_{\pi}
$$
\nfor $\eta_{3} \to 0: \Phi_{P} \to 1, \Phi_{\sigma} \to 6\tau \bar{\tau}$ WWW approx.

The Gegenbauer coefficients

at scale $\mu_0=2\,{\rm GeV}$:

 $\, n \,$

 a^P

 $\it a$ $\, P \,$ a_2^P = -0.56 , a_4^P $\, P \,$ 4 $_4^F = 0.17$, $a_{\mathbf{0}}^{\sigma}$ a_2^{σ} = -0.084, a_4^{σ} 4 $\frac{\sigma}{4} = 0.031 \, , \qquad \eta_c$ σ $_{\sigma} \, = \, 0.64$. $n_{n}^{P}=a_{n}^{\sigma}$ $\frac{\sigma}{n} = 0$ for $n \geq 6$

values of $a_2^{P,\sigma}$ $\frac{1}{2}$, $\frac{1}{2}$ compatible with other results values of $a_4^{P,\sigma}$ $\frac{1}{4}$, $^{\prime}$ have opposite sign

Dyson-Schwinger approach Shi et al (15) light-cone quark model Choi-Ji (17) chiral quark model Nam-Kim (06)

An alternative

Braun-Filyanov (90), Ball (98)

instead of $A^+=0$ the contour (Fock-Schwinger) gauge $x^{\mu}A_{\mu}(x)=0$ is used

EOM more complicated but ^a recursion formula for the moments of the twist-3 DAs has been derived, allows also to calculate Φ_P and Φ_σ for given $\Phi_{3\pi}$

they differ from our ones for the same $\Phi_{3\pi}$

With these DAs the result for the subprocess amplitude is not gauge invariant

Reason: the Wilson lines $(\neq 1)$ in the vacuum-pion matrix elements affect the calculation of the amplitudes

At least for electroproduction of ρ_T the equivalence of the two methods has been shownAnikin et al (10)

Summary

handbag factorization applied to wide-angle photoproduction of pions

- $\bullet\,$ In contrast to WACS, the leading-twist analysis (with helicity non-flip GPDs) fails by order of magnitude
- we calculated the full (2- and 3-particle) twist-3 contribution; in contrast to electroproduction the subprocess amplitude is regular incollinear approximation
- $\bullet\,$ together with the transversity form factors $(1/x$ moments of transversity GPDs) which are known from pion electroproduction at small $-t$ and are extrapolated to large $-t$ and a 3-particle twist-3 DA taken (partially) from literature we are able to fit the CLAS data at $s = 11.06 \,\text{GeV}^2$
- •• there are interesting spin effects, e.g. $A_{LL}^{twist-3} = -K_{LL}^{twist-3}$ but $A_{LL}^{twist-2} = K_{LL}^{twist-2}$ as for WACS