Direct $|V_{tq}|$ Determination At The Large Hadron Collider

Monalisa Patra

Work done in collaboration with D. Faroughy, J. Kamenik, J. Zupan

The Lagrangian for the mass term of the quark fields after EWSB in the Standard Model is

$$\mathcal{L} = (M_d)_{ij} ar{D'}_{Li} D'_{Rj} + (M_u)_{ij} ar{U'}_{Li} U'_{Rj},$$

with U'=(u',c',t'), D'=(d',s',b') and $M_q = vY^q/\sqrt{2}$

The Lagrangian for the mass term of the quark fields after EWSB in the Standard Model is

$$\mathcal{L} = (M_d)_{ij} ar{D'}_{Li} D'_{Rj} + (M_u)_{ij} ar{U'}_{Li} U'_{Rj},$$

with U'=(u',c',t'), D'=(d',s',b') and $M_q = vY^q/\sqrt{2}$

$$\mathcal{L}_{W^{\pm}} = -rac{g}{\sqrt{2}}\overline{U}_{i}\gamma^{\mu}rac{1-\gamma^{5}}{2}\left(V_{\mathrm{CKM}}
ight)_{ij}D_{j}W_{\mu}^{+} + \mathrm{h.c.},$$

 $V_{\rm CKM} = V_{uL}^{\dagger} V_{dL}$ is the unitary CKM matrix:

$$V_{\rm CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right)$$

$ V_{ud} $: Nuclear β decays	V _{us} : Kaon Decays	V _{ub} : <i>B</i> decays
$ V_{cd} $: D decays + ν scatter	V _{cs} : D Decays	V _{cb} : B decays

$ V_{ud} $: 0.97417 \pm 0.00021	$ V_{us} $: 0.2248 \pm 0.0006	$ V_{ub} $: (4.09 \pm 0.39) $ imes$ 10 ⁻³
$ V_{cd} $: 0.220 \pm 0.005	$ V_{cs} $: 0.995 \pm 0.016	$ V_{cb} $: (40.5 \pm 1.5) $ imes$ 10 ⁻³

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$ V_{ud} $: Nuclear β decays	V _{us} : Kaon Decays	V _{ub} : <i>B</i> decays
$ V_{cd} $: D decays + ν scatter	V _{cs} : D Decays	V _{cb} : B decays

$ V_{ud} $: 0.97417 \pm 0.00021	$ V_{us} $: 0.2248 \pm 0.0006	$ V_{ub} $: (4.09 \pm 0.39) $ imes$ 10 ⁻³
$ V_{cd} $: 0.220 \pm 0.005	$ V_{cs} $: 0.995 \pm 0.016	$ V_{cb} $: (40.5 \pm 1.5) $ imes$ 10 ⁻³

t-channel Single top production, $pp \rightarrow tj$, $\sigma^{SM} \propto |V_{tb}|^2$

$$\begin{split} |V_{tb}| &= \sqrt{\frac{\sigma_{exp}}{\sigma_{theory}^{SM}}} \\ \text{assuming } |V_{tb}| &>> |V_{ts}|, |V_{td}| \\ |V_{tb}| &= 0.97 \pm 0.01 \text{ @ 8TeV LHC} \end{split}$$

t-channel Single top production, $pp \rightarrow tj$, $\sigma^{SM} \propto |V_{tb}|^2$

$$\begin{split} |V_{tb}| &= \sqrt{\frac{\sigma_{exp}}{\sigma_{theory}^{SM}}}\\ \text{assuming} \; |V_{tb}| &>> |V_{ts}|, |V_{td}|\\ |V_{tb}| &= 0.97 \pm 0.01 \; @ \; \text{8TeV LHC} \end{split}$$

t-channel Single top production, $pp \rightarrow tj$, $\sigma^{SM} \propto |V_{tb}|^2$

Indirect measurements

- Weak constraint on $|V_{tb}|$ can be obtained from precision electroweak data, $\Gamma(Z \rightarrow b\bar{b}), |V_{tb}| = 0.77^{+0.18}_{-0.24}$
- $R = \mathcal{B}(t \rightarrow Wb)/\mathcal{B}(t \rightarrow Wq) = |V_{tb}|^2/(\sum_q |V_{tq}|^2)$

$$\begin{split} |V_{tb}| &= \sqrt{\frac{\sigma_{exp}}{\sigma_{theory}^{SM}}}\\ \text{assuming} \; |V_{tb}| &>> |V_{ts}|, |V_{td}|\\ |V_{tb}| &= 0.97 \pm 0.01 \; @ \; \text{8TeV LHC} \end{split}$$

t-channel Single top production, $pp \rightarrow tj$, $\sigma^{SM} \propto |V_{tb}|^2$

Indirect measurements

- Weak constraint on $|V_{tb}|$ can be obtained from precision electroweak data, $\Gamma(Z \rightarrow b\bar{b}), |V_{tb}| = 0.77^{+0.18}_{-0.24}$
- $R = \mathcal{B}(t \to Wb) / \mathcal{B}(t \to Wq) = |V_{tb}|^2 / (\sum_q |V_{tq}|^2) = |V_{tb}|^2, |V_{tb}| > 0.975$

12.2.7. $|V_{td}|$ and $|V_{ts}|$: CKM section PDG 2016 The CKM elements $|V_{td}|$ and $|V_{ts}|$ are not likely to be precisely measurable in tree-level processes involving top quarks, so one has to rely on determinations from $B-\overline{B}$ as constitutions mediated where diagrams with the quarks or loop mediated wave K and R. **12.2.7.** $|V_{td}|$ and $|V_{ts}|$: CKM section PDG 2016 The CKM elements $|V_{td}|$ and $|V_{ts}|$ are not likely to be precisely measurable in tree-level processes involving top quarks, so one has to rely on determinations from $B-\overline{B}$ as constitutions mediated where diagrams with the quarks or loop mediated wave K and R.

Indirect measurements

- Indirect determination (loop level) and model dependent
- Theoretical uncertainties in hadronic effects limit the accuracy

•
$$|V_{td}| = (8.2 \pm 0.6) \times 10^{-3},$$

 $|V_{ts}| = (40.0 \pm 2.7) \times 10^{-3}$

* LHC Limit from *R*, $\sqrt{|V_{td}|^2 + |V_{ts}|^2} \le 0.217 |V_{tb}|$

- Loop mediated processes are sensitive to new physics effects
- Heavy new particles may contribute to the loop s. Fajfer, B. Melic, MP, arXiv:1801.07115

- Loop mediated processes are sensitive to new physics effects
- Heavy new particles may contribute to the loop s. Fajfer, B. Melic, MP, arXiv:1801.07115

- New physics scenarios with Vector-like top quarks, destroys the unitarity of the SM CKM matrix, $\sum_{x=d,s,b} |V_{tx}|^2 < 1$ A. Girdhar, B. Mukhopadhyaya, MP, arXiv:1404.3374
- The left and right handed component of the vector-like quarks have the same quantum number under $SU(3) \times SU(2)_L \times U(1)_Y$

I) $t'_L, t'_R = (3, 1, 4/3)$ with electric charge +2/3, and mixes with *t* II) $b'_L, b'_R = (3, 1, -2/3)$ with electric charge -1/3, and mixes with *b*

$$\left(egin{array}{c} d_w \ s_w \ b_w \ b_w' \end{array}
ight) \hspace{0.2cm} = \hspace{0.2cm} U \left(egin{array}{c} d \ s \ b \ b' \ b' \end{array}
ight)$$

where

$$U_{4\times4} = \begin{pmatrix} V_{3\times4} \\ X_{1\times4} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ X_{4d} & X_{4s} & X_{4b} & X_{4b'} \end{pmatrix}$$

$$\begin{split} \mathcal{L}_{f\bar{t}Z} &= \frac{e\gamma_{\mu}}{6\sin 2\theta_{W}} \bar{f}(3(1-\gamma_{5})|U_{33}|^{2} - 4\sin^{2}\theta_{W}(|U_{33}|^{2} + |U_{43}|^{2}))fZ^{\mu} \\ \mathcal{L}_{F\bar{F}Z} &= \frac{e\gamma_{\mu}}{6\sin 2\theta_{W}} \bar{F}(3(1-\gamma_{5})|U_{34}|^{2} - 4\sin^{2}\theta_{W}(|U_{34}|^{2} + |U_{44}|^{2}))FZ^{\mu} \\ \mathcal{L}_{fFZ} &= \frac{e\gamma_{\mu}}{6\sin 2\theta_{W}} \bar{f}(3(1-\gamma_{5})(U_{33}^{*}U_{34}) - 4\sin^{2}\theta_{W}(U_{33}^{*}U_{34} + U_{43}^{*}U_{44}))FZ^{\mu} + h.c. \end{split}$$

Getting to Grips with QCD, SE

Vector-Like Quarks

A.Saavedra, arXiv: 0210112

Compare with indirect measurements : $|V_{td}| = (8.2 \pm 0.6) \times 10^{-3}, |V_{ts}| = (40.0 \pm 2.7) \times 10^{-3}$ Getting to Grips with QCD, SE Monalisa Patra

Directly measuring V_{td} at the LHC

• Proposal : tW associated production at the LHC, $dg \rightarrow tW^-$, $\bar{d}g \rightarrow \bar{t}W^+ \propto |V_{td}|^2$

Special Features :

- Charge asymmetry from (valence) d-quark vs (sea) anti-d quark $- W^-$ is more forward then W^+

Dominant backgrounds are charge symmetric :

•
$$bg \rightarrow tW^-, \bar{b}g \rightarrow \bar{t}W^+, \ \sigma_{tW}^{\rm SM} \approx 28 \text{ pb}$$

• $ag \rightarrow t\bar{t}, \ \sigma_{tW}^{\rm SM} \approx 680 \text{ pb}$

Getting to Grips with QCD, SE

Directly measuring V_{td} at the LHC

Alvarez, Da Rold, Estevez, Kamenik [1709.07887]

* Motivates the kinematical variables :

 $\Delta p_{T}(\ell) = p_{T}(\ell^{+}) - p_{T}(\ell^{-}),$

Getting to Grips with QCD, SE

Directly measuring V_{td} at the LHC

Alvarez, Da Rold, Estevez, Kamenik [1709.07887]

- * Signal Region : 1st quadrant, Background Region : Symmetric
- * The following asymmetry is proposed

$$A(\eta, p_T) = \frac{N^+ - N^-}{N^+ + N^-}, \text{ where } N^{\pm} = N\left(\Delta |\eta(\ell)| \ge 0 \& \Delta p_T(\ell) \ge 0\right),$$

Getting to Grips with QCD, SE

Directly measuring V_{td} at the LHC

Alvarez, Da Rold, Estevez, Kamenik [1709.07887]

Directly measuring V_{td} at the LHC

Alvarez, Da Rold, Estevez, Kamenik [1709.07887]

12.2.7. $|V_{td}|$ and $|V_{ts}|$:
 CKM section PDG 2016

 The CKM elements $|V_{td}|$ and $|V_{ts}|$ are not likely to be precisely measurable in

tree-level processes involving top quarks, so one has to rely on determinations from $B-\overline{B}$

Directly measuring V_{ts} at the LHC

Why not ?

- Top dominantly decays via $t \rightarrow bW^+$, with BR $(t \rightarrow sW^+) \approx |V_{ts}|^2 \approx 1.6 \times 10^{-3}$
- No charge asymmetry possible as V_{td}
- Strange and Down quark jets are indistinguishable at Atlas/CMS $K^{\pm} \sim \pi^{\pm}$ since no particle ID

Directly measuring V_{ts} at the LHC

Why not ?

- Top dominantly decays via $t \rightarrow bW^+$, with BR $(t \rightarrow sW^+) \approx |V_{ts}|^2 \approx 1.6 \times 10^{-3}$
- No charge asymmetry possible as V_{td}
- Strange and Down quark jets are indistinguishable at Atlas/CMS $K^{\pm} \sim \pi^{\pm}$ since no particle ID

Can we measure $\sqrt{|V_{ts}|^2 + |V_{td}|^2}$ at the LHC ?

Required conditions

- plenty of top quarks
- need a light-quark jet tagger, "s-tagger"

Why not ?

- Top dominantly decays via $t \rightarrow bW^+$, with BR $(t \rightarrow sW^+) \approx |V_{ts}|^2 \approx 1.6 \times 10^{-3}$
- No charge asymmetry possible as V_{td}
- Strange and Down quark jets are indistinguishable at Atlas/CMS $K^{\pm} \sim \pi^{\pm}$ since no particle ID

Can we measure $\sqrt{|V_{ts}|^2 + |V_{td}|^2}$ at the LHC ?

Required conditions

- plenty of top quarks : at the LHC, with $\sqrt{s} = 13$ TeV and $\mathcal{L} = 30$ fb⁻¹, $\mathcal{O}(2 \times 10^7)$ tops will be produced
- need a light-quark jet tagger, "s-tagger" : Jet tagging technology : b-jets, quark/gluon jets, jet substructure techniques etc

$t\bar{t}$ production

$t\bar{t}$ production

two possible single top processes

$t\bar{t}$ production

W+ jets, Z+jets and Diboson process

Getting to Grips with QCD, SE

Jets

- Jets are the most common objects arising in high energy collisions and heavy particle decays. The LHC is a very jetty place with the Signal, Background all containing jet
- They are a collimated bunch of energetic hadrons flying roughly in the same direction leaving tracks and energy deposits in the detectors

- Jets are the most common objects arising in high energy collisions and heavy particle decays. The LHC is a very jetty place with the Signal, Background all containing jet
- They are a collimated bunch of energetic hadrons flying roughly in the same direction leaving tracks and energy deposits in the detectors

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate

- Jets are the most common objects arising in high energy collisions and heavy particle decays. The LHC is a very jetty place with the Signal, Background all containing jet
- They are a collimated bunch of energetic hadrons flying roughly in the same direction leaving tracks and energy deposits in the detectors

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate

Capability to discriminate light-quark jets (u, d, s) from heavy quark jets (b, c) & g-jets

Getting to Grips with QCD, SE

b-tagging

b-tagging relies on

 long life time, high mass and large momentum of *b* Hadrons

b-tagging

b-tagging relies on

- long life time, high mass and large momentum of b Hadrons
- based on the position of the secondary vertices (SV), # of SV, energetic charged leptons due to decays b → ℓ[±]X

Illustration of a possible hadronically decaying top quark. From D0 collabora-

tion

b-tagging

b-tagging relies on

- long life time, high mass and large momentum of b Hadrons
- based on the position of the secondary vertices (SV), # of SV, energetic charged leptons due to decays b → ℓ[±]X

Illustration of a possible hadronically decaying top quark. From D0 collabora-

tion

Cuts	ϵ_q	ϵ_b	ϵ_{c}	ϵ_g
$N_{\rm SV} > 3$	0.0091	0.636	0.094	0.016

Tagging and mis-tagging efficiencies for b-taggers, from the process pp $\,\to\, Z(\mu^+\,\mu^-)j$.

Light quark tagging

Discriminate from the *b*, *c* jets

Light quark tagging opposite to *b*-tagging

• Absence of secondary vertex and energetic charged leptons

Light quark tagging

Discriminate from the *b*, *c* jets

Light quark tagging opposite to *b*-tagging

- Absence of secondary vertex and energetic charged leptons
- Requires all prompt tracks in jet to have $d_0 < 25 \mu m$

 $d_0 \rightarrow$ transverse impact parameter

Light quark tagging

Discriminate from the *b*, *c* jets

Light quark tagging opposite to b-tagging

- Absence of secondary vertex and energetic charged leptons
- Requires all prompt tracks in jet to have d₀ < 25μm

 $d_0 \rightarrow$ transverse impact parameter

Discriminate from the gluon jets

- multiplicity of (charged) particles in jet
- mass and width of the jet
- 2-point energy correlation function :

$$U_1 = \sum\limits_{i < j \in J} z_T^i z_T^j \; (R_{ij})^eta, \; z_T^i \equiv p_T^i / p_T^{jet}$$

$$R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

U₁ (2-point energy correlation func.)

Getting to Grips with QCD, SE

Light quark tagging : contd.

QCD factorization theorem : High p_T hadron production cross section in hadron-hadron collisions can be written

$$d\sigma_{AB \to h}^{\text{hard}} = \underbrace{f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_1, Q^2)}_{PDF's} \otimes d\sigma_{ab \to c}^{\text{hard}}(x_1, x_2, Q^2) \otimes \underbrace{D_{c \to h}(z, Q^2)}_{\text{Fragmentation Function}}$$

Light quark tagging : contd.

QCD factorization theorem : High p_T hadron production cross section in hadron-hadron collisions can be written

Fragmentation functions encode the probability of a parton to fragment into a hadron with a momentum fraction , $\frac{p^{hadron}}{p^{oarton}}$

Light quark tagging : contd.

QCD factorization theorem : High p_T hadron production cross section in hadron-hadron collisions can be written

Fragmentation functions encode the probability of a parton to fragment into a hadron with a momentum fraction, p_{parton}^{hadron}

– Consider $z_x = \frac{\vec{p}_{jet}, \vec{p}_x}{|\vec{p}_{jet}|^2}$, related to the jet-fragmentation function

 Fraction of the jet momentum carried by the hardest charged track,

 $Z_{max} \equiv \max\{Z_x\}_{x \in jet}$

 Observable has been studied at ATLAS and CMS. Good agreement with Montecarlo generator, Pythia DF,JK,MP,JZ

ROC curves for the two q-taggers

(t) type	Cuts	ϵ_q^t	ϵ_b^t	ϵ_{c}^{t}	ϵ_g^t
<i>q</i> -tagger	$N_{SV} = 0 \& z_{max} > 0.3$	0.18	0.0031	0.038	0.049
<i>q</i> -tagger	$N_{SV} = 0 \& U_1 < 0.21$	0.19	0.0017	0.036	0.019

Tagging and mis-tagging efficiencies for q- taggers

Events with 2 isolated leptons [mini-isolation criteria]

 $\circ e_{\mu}$ final state, to reduce Drell-Yan Z boson production

Select 2 jet candidates :

leading & sub-leading jets $p_T(j_1, j_2) > p_T^{cut}, |\eta(j_1, j_2)| < 1.1$

Tag j_1 and j_2 with light-quark and bottom tagger

Signal Region : $j_1 j_2$ tagged as qb

```
Background Region : j_1 j_2 tagged as qq, bb, qj, bj, jj
```


$\epsilon A \sigma$ [fb]	ĴĴ	ĵq	ĵb	qb	qq	bb
$t\overline{t} ightarrow b\overline{b}$	459	26	1156	35	0.27	665
$t\overline{t} ightarrow q\overline{b}$	3.3	0.79	3.4	0.65	0.033	0.054
tW ightarrow bq	41	3.7	77	4.6	0.046	27

Computed fiducial cross-sections for each tagged di-jet bin in the jj + e μ channel at the 13 TeV LHC, assuming the SM values for V_{tx}

- * Select pair of high p_T jets from the top-decays $t\bar{t} \rightarrow j_1 j_2 W^+ W^-$
 - **(**) no jet from the top decays selected (background-dominated [ISR/FSR]) [α_0]
 - only one jet correctly assigned to a top decay (combination of signal and background) [α₁]
 - \bigcirc two jets correctly assigned to the top decays (signal-dominated) [α_2]

Relative contributions of the above three classes of events expressed by weights α_i , with $\sum_i \alpha_i = 1$

- * Select pair of high p_T jets from the top-decays $t\bar{t} \rightarrow j_1 j_2 W^+ W^-$
 - **(**) no jet from the top decays selected (background-dominated [ISR/FSR]) [α_0]
 - only one jet correctly assigned to a top decay (combination of signal and background) [α₁]
 - \bigcirc two jets correctly assigned to the top decays (signal-dominated) [α_2]

Relative contributions of the above three classes of events expressed by weights α_i , with $\sum_i \alpha_i = 1$

⁽³⁾ The α_i 's can be estimated directly from data using the kinematic properties of the events

Extraction of the $\alpha'_i s$

The lepton-jet pairs originating from the same top quark decay are kinematically correlated with a kinematical end-point at

 $M_{\ell,b}^{max}\equiv \sqrt{m_t^2-m_W^2}pprox$ 156 GeV

Extraction of the $\alpha'_i s$

The lepton-jet pairs originating from the same top quark decay are kinematically correlated with a kinematical end-point at

 $M_{\ell,b}^{max}\equiv \sqrt{m_t^2-m_W^2}pprox$ 156 GeV

© "random rotation" of the momentum of the selected leptons in the $(\cos \theta, \phi)$ phase space & recomputation of $M_{\ell i}$

Extraction of the $\alpha'_i s$

The lepton-jet pairs originating from the same top quark decay are kinematically correlated with a kinematical end-point at

 $M_{\ell,b}^{max}\equiv \sqrt{m_t^2-m_W^2}pprox$ 156 GeV

③ "random rotation" of the momentum of the selected leptons in the $(\cos \theta, \phi)$ phase space & recomputation of $M_{\ell i}$

- N : All lepton-jet pairs (Red)
- *N*_{model} : All randomly rotated lepton-jet pairs (Blue)
- *N*_{mis} : All mis-assigned lepton-jet pairs (Red-Orange)

- N : All lepton-jet pairs (Red)
- *N*_{model} : All randomly rotated lepton-jet pairs (Blue)
- *N*_{mis} : All mis-assigned lepton-jet pairs (Red-Orange)

Correctly assigned
$$\ell j$$
 pairs $\alpha = \frac{N - N_{\text{mis}}}{2N_{\text{evts}}} = \frac{N}{2N_{\text{evts}}} \left(1 - \frac{N^{M_{\ell j} > 2}}{N_{\text{model}}^{M_{\ell j} > 2}}\right) = 0.812$ for the " $e\mu$ " sample

Agrees well with the experiment, arXiv : 1404.2292

$$\alpha_2 = \alpha^2 = 0.675, \quad \alpha_1 = 2\alpha(1 - \alpha) = 0.295, \quad \alpha_0 = (1 - \alpha)^2 = 0.030$$

$$N(it\,kt'|2\,jets) = \sum_{l=0}^{2} N^{obs}(2) \cdot \alpha_{l} \cdot \mathcal{P}_{it\,kt'}^{l|2}, \quad t^{(\prime)} = (q, b, j)$$

* $N^{obs}(2)$: total number of observed events with exactly 2 jets prior to tagging * $\mathcal{P}_{i,k,t'}^{I|2}$: probability of tagging *i* t-jets and *k* t'-jets, (*qb*, *qq*, *bb*, *q*_J, *b*_J, *j*_J)

$$\begin{split} \mathcal{P}_{tt'}^{0|2} &= \frac{2\,\varepsilon_{q^*}^t\,\varepsilon_{q^*}^{t'}}{1+\delta_{tt'}} \\ \mathcal{P}_{tt'}^{1|2} &= \frac{(\varepsilon_{q^*}^t\,\varepsilon_b^{t'}+\varepsilon_{q^*}^{t'}\varepsilon_b^t)+(\varepsilon_{q^*}^t\,\varepsilon_q^{t'}+\varepsilon_{q^*}^{t'}\varepsilon_q^t)\,\rho^2}{(1+\delta_{tt'})(1+\rho^2)} \\ \mathcal{P}_{tt'}^{2|2} &= \frac{2\,(\varepsilon_b^t+\varepsilon_q^t\,\rho^2)(\varepsilon_b^t+\varepsilon_q^{t'}\,\rho^2)}{(1+\delta_{tt'})(1+\rho^2)^2} \\ \varepsilon_{q^*}^t &= a\,\varepsilon_q^t+b\,\varepsilon_b^t+c\,\varepsilon_c^t+(1-a-b-c)\,\varepsilon_g^t \end{split}$$

$$\mathcal{R}_q \equiv \frac{\mathcal{B}(t \to sW) + \mathcal{B}(t \to dW)}{\sum_{j=d,s,b} \mathcal{B}(t \to jW)}, \quad \rho^2 \equiv \frac{\mathcal{R}_q}{\mathcal{R}_b} = \frac{\mathcal{B}(t \to sW) + \mathcal{B}(t \to dW)}{\mathcal{B}(t \to bW)}$$

Boosted semi-leptonic tt category

- Select events with 1 isolated lepton and a Fat-jet with *R* = 1.5
- The subjet *j*₁ within the fat jet is tagged as *b* or *q* jet
- Remove top-jet from event and re-cluster jets with R = 0.3 and p_T > 100 GeV
- Jet j₂ which best reconstructs leptonic top is selected and then tagged as bottom or light-quark jet

Boosted semi-leptonic $t\bar{t}$ category

$\epsilon A \sigma$ [fb]	J	q	b
$t\overline{t} \rightarrow bt_i$	716	18	1232
$t\overline{t} ightarrow qt_i$	3	0.5	0.095
$tW ightarrow bt_j$	11	0.61	4.6

Computed fiducial cross-sections for the tagged probed jet bin in the semi-leptonic boosted $t\bar{t}$ channel at the 13 TeV LHC, assuming the SM values for V_{tx}

Conclusions

- The CKM parameters V_{td} and V_{ts} are fundamental parameters of the SM governing flavor conversion in the top sector
- These elements are constrained indirectly as their determination through direct measurement requires processes with on-shell quarks with a very small branching ratio making it difficult
- We propose a light quark tagger, which discriminates the light quark jets from the gluon and the heavy quark jets
- The fully leptonic and the boosted semi-leptonic scenarios are analysed
- We show that the current bound on the direct determination of $\sqrt{V_{td}^2 + V_{ts}^2}$ can be surpassed with the existing LHC dataset
- It will be possible to exclude $\sqrt{V_{td}^2 + V_{ts}^2} > 0.06$ at the 2σ level with a luminosity of 100 fb⁻¹ at the 13 TeV LHC

