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Elastic Scattering e p → e p

e e
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p p

〈p′| Jµ(0) |p〉 = ū(p′)

[
F1(t) γµ + F2(t)

iσµα∆α

2m

]
u(p),



Elastic Scattering e p → e p

Up-and down-quark contributions to the nucleon electromagnetic form ...
arxiv.org/pdf/1701.01662 Quattan et al



Deep Inelastic Scattering e p → eX

e e

γ∗

p
X

In the Björken limit i.e. when the photon virtality Q2 = −q2 and the squared
hadronic c.m. energy (p+ q)2 become large, with the ratio xB = Q2

2p·q fixed,
the cross section factorizes into a hard partonic subprocess calculable in the
perturbation theory, and a parton distributions.

Collinear factorization in QCD
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from EIC at Quarkonium 2016
https://indico.hep.pnnl.gov/event/0/session/24/contribution/87/material/slides/0.pdf



DVCS

The simplest and best known process is Deeply Virtual Compton Scattering:
e p → e p γ
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p p

γ
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2P+
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2m
u(p)

]
,



DVCS

Factorization into GPDs and perturbative coefficient function - on the level of
amplitude.

DIS : σ = PDF⊗ partonic cross section
DVCS : M = GPD⊗ partonic amplitude

´ µ ´ µ

È

P P

xP xP

γ∗(q) γ∗(q)

È

(1+ ξ)P (1− ξ)P

(x + ξ)P (x − ξ)P

γ∗(q) γ(q′ )

Figure: Deep Inelastic Scattering cross section is given by the imaginary part of
diagram (a). Amplitude of Deeply Virtual Compton Scattering is given by diagram (b).

Wµν ∼ =Tµν



Symmetric variables

P =
p+ p′

2
, q̄ =

q + q′

2

Generalized Bjorken variable:

ξ =
−q̄2

2q̄ · P ≈
xB

2− xB
, xB =

Q2

2q · p

momentum transfer between proton initial and final state:

t = (p′ − p)2

In the convenient reference frame, where P has only positive time- and z-
components, and light vector are defined as:

v+ = (1, 0, 0, 1)
1√
2

, v− = (1, 0, 0,−1)
1√
2

(−2ξ) has an interpretation of the fraction of momentum transport in "+"
direction.



GPD definition.

F q =
1
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∫
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,

interpretation, ERBL, DGLAP

ξ−x−ξ− x

x
−ξ ξ0 1−1

+ξxxξ− x+ξ x−ξ

Factorization scale dependance,

Three variables x, ξ, t .



GPD - properties,

Forward limit:

Hq(x, 0, 0) = q(x) , for x > 0 ,

Hq(x, 0, 0) = −q̄(x) , for x < 0 ,

Hg(x, 0, 0) = xg(x) ,

similarly for polarized disributions and PDFs.
Reduction to form factors:∫ 1

−1

dxHq(x, ξ, t) = F q1 (t),

∫ 1

−1

dxEq(x, ξ, t) = F q2 (t),

where the Dirac and Pauli form factors

〈p′| q̄(0)γµq(0) |p〉 = ū(p′)

[
F q1 (t) γµ + F q2 (t)

iσµα∆α

2m

]
u(p),

Ji sum rule:

lim
t→0

∫ 1

−1

dx x [Hf (x, ξ, t) + Ef (x, ξ, t)] = 2Jf

where Jf is fraction of the proton spin carried by quark f (including spin
and orbital angular momentum).



Impact parameter representation

M. Burkardt PRD 62 (2000)
At ξ = 0 ⇒ −t = ∆2

⊥ :

H(x,b⊥) =

∫
d2∆⊥

(2π)2
e
−ib⊥·∆⊥H(x, 0,−∆⊥)

can be interpreted as probability of finding a parton with longitudinal momentum fraction x at
a given b⊥.



GPDs

GPDs enter factorization theorems for hard exlusive reactions (DVCS,
deeply virtual meson production, TCS etc.), in a similar manner as PDFs
enter factorization theorems for inclusive (DIS, etc.)

GPDs are functions of x, t, ξ, µ2
F

First moment of GPDs enters the Ji’s sum rule for the angular momentum
carried by partons in the nucleon,

2+1 imaging of nucleon,

Deeply Virtual Compton Scattering (DVCS) is a golden channel for GPDs
extraction,



DVCS - variables

Four variables needed to describe ep −→ epγ at fixed beam energy. Usually :
Q2, xB , t and φ:



DVCS and BH



Observables

The lp→ lpγ cross section on an unpolarized target for a given beam charge,
el in units of the positron charge and beam helicity hl/2 can be written as :

dσhl,el(φ) = dσUU(φ) [1 + hlALU,DVCS(φ) + elhlALU,I(φ) + elAC(φ)] ,

If both longitudinally polarized positively and negatively charged beams are
available (HERMES):

AC(φ) =
1

4dσUU(φ)

[
(dσ

+→ + dσ
+←)− (dσ

−→ + dσ
−←)

]
. (1)

ALU,I(φ) =
1

4dσUU(φ)

[
(dσ

+→ − dσ
+←)− (dσ

−→ − dσ
−←)

]
, (2)

ALU,DVCS(φ) =
1

4dσUU(φ)

[
(dσ

+→ − dσ
+←) + (dσ

−→ − dσ
−←)

]
. (3)

If an experiment only has access to one value of el such as in Jefferson Lab,
one can only measure the beam spin asymmetry AelLU

A
el
LU(φ) =

dσ
el→ − dσ

el←

dσ
el→ + dσ

el←
, (4)



Models & Fits

Topic for another seminar...

A lot of data, but not enough to fit 4 GPDs (function of 3 variables) for
every quark flavour ... and gluons

GPDs must satisfy certain principles

Few models on the market (Goloskokov-Kroll, VGG, Kumericki-Mueller
...), most of them describe data well (small problems with Hall A), only
one describes all data - including small x.

still much more data needed to determine GPDs (mostly the imaginary
part of CFF H determined)

PARTONS - modern platform devoted to study GPDs (Herve Moutarde,
Saclay)



DATA vs models

Results

Phys. Rev. D91(5), 052014 (2015) Phys. Rev. Lett. 115(21), 212003 (2015)

CLAS data: 

this analysis
GK model
VGG model

Paweł Sznajder                    Getting to Grips with QCD  SE 1



FUTURE

JLAB - 12 GeV . Plans for Hall A and CLAS to measure beam spin and
target spin asymmetries with much higher luminosity, smaller xB and
higher Q2. Also CLAS plan to measure DVCS on neutron - necessary to
make GPD flavour separation.
COMPASS - recoil detector to ensure exclusivity - plans to measure mixed
charge-spin asymmetries with 160GeV muon beam.
EIC (!)



DVCS - what else, and why

Difficult: exlusivity, 3 variables, GPD enter through convolutions, only
GPD(ξ, ξ, t) accesible through DVCS at LO!

universality,

flavour separation,



Processes

Meson production - additional information (and difficulties),



So, in addition to spacelike DVCS ...

N N’

q

e
e

γ

GPD

( a )

Figure: Deeply Virtual Compton Scattering (DVCS) : lN → l′N ′γ



we can also study timelike DVCS

N N’

qγ

GPD

e −

e+

( b )

Figure: Timelike Compton Scattering (TCS): l−N → l−N ′l′+l′−

Why TCS:

universality of the GPDs

another source for GPDs (special sensitivity on real part of GPD H),

spacelike-timelike crossing,

first step towards DDCVS,



General Compton Scattering:

Figure: Double Deeply Virtual Compton Scattering (DDVCS): γN → l+l−N ′

γ∗(qin)N(p)→ γ∗(qout)N
′(p′)

variables, describing the processes of interest in this generalized Bjorken limit,
are the scaling variable ξ and skewness η > 0:

ξ = −q
2
out + q2

in

q2
out − q2

in

η , η =
q2
out − q2

in

(p+ p′) · (qin + qout)
.

DDVCS: q2
in < 0 , q2

out > 0 , η 6= ξ

DVCS: q2
in < 0 , q2

out = 0 , η = ξ > 0

TCS: q2
in = 0 , q2

out > 0 , η = −ξ > 0



Remark on DDVCS

A DDVCS experiment using a modified CLAS12 detector and 11 GeV electron
beam in Hall-B was introduced as a letter of intent to Jefferson Lab PAC44

Projected statistical uncertainties, based on Bethe- Heitler cross section, on the beam spin
asymetry calculated from the VGG model, for one example of Q

′2 bin in the proposed CLAS12
DDVCS experiment



Coefficient functions and Compton Form Factors for DDVCS

CFFs are the GPD dependent quantities which enter the amplitudes and now
depend on two variables: skewness ξ and and skewness η.

Aµν(ξ, η, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµνT

(
H(ξ, η, t) γ+ + E(ξ, η, t)

iσ+ρ∆ρ

2M

)
+ iεµνT

(
H̃(ξ, η, t) γ+γ5 + Ẽ(ξ, η, t)

∆+γ5

2M

)]
u(P ) ,

,where:

H(ξ, η, t) = +

∫ 1

−1

dx

(∑
q

T q(x, ξ, η)Hq(x, η, t) + T g(x, ξ, η)Hg(x, η, t)

)

H̃(ξ, η, t) = −
∫ 1

−1

dx

(∑
q

T̃ q(x, ξ, η)H̃q(x, η, t) + T̃ g(x, ξ, η)H̃g(x, η, t)

)
.



LO

DVCS vs TCS

DVCST q = −e2
q

1
x+η−iε − (x→ −x) = (TCST q)∗

DVCS T̃ q = −e2
q

1
x+η−iε + (x→ −x) = −(TCS T̃ q)∗

DVCSRe(H) ∼ P
∫

1

x± ηH
q(x, η, t) , DVCSIm(H) ∼ iπHq(±η, η, t)

DDVCS
DDVCST q = −e2

q
1

x+ ξ − iε − (x→ −x)

DDVCSRe(H) ∼ P
∫

1

x± ξH
q(x, η, t) , DDVCSIm(H) ∼ iπHq(±ξ, η, t)

But this is only true at LO. At NLO all GPDs hidden in the convolutions.



Ultraperipheral collisions

σ =

∫
dn(k)

dk
σγp(k)dk

σγp(k) is the cross section for the γp→ pl+l− process and k is the γ’s energy,
and dn(k)

dk
is an equivalent photon flux.

dn

dk
=

2Z2αEM
πk

[
ωpAK0(ωpA)K1(ωpA)− ωpA

2

2

(
K2

1 (ωpA)−K2
0 (ωpA)

)]
(5)



The TCS differential cross section at UPC
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Figure: The differential cross sections (solid lines) for t = −0.2GeV2, Q′2 = 5GeV2

and integrated over θ = [π/4, 3π/4], as a function of ϕ, for s = 107GeV2 (a),
s = 105GeV2(b), s = 103GeV2 (c) with µ2

F = 5GeV2. We also display the Compton
(dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.



Exclusive processes and GPDs

N N’

q

e
e

γ

GPD

( a ) DVCS

N N’

q

e
e

GPD

π

DA

( c )

N N’

qγ

GPD

e −

e+

( b )

Figure: DVMP and TCS

Various exclusive processes give information about GPDs: DVCS, TCS,
DDVCS, DVMP, HVMP

Also neutrino production of light mesons considered: allows for flavour
separation, different combination of GPDs due to the charged current
coupling structure. Smaller cross sections, less intense beams but process
in the reach of the i.e. MINERVA experiments

→ [Kopeliovich,Schmidt, Siddikov] PRD 86



Neutrino production of charmed meson

MINERvA (Fermilab) ν on nuclei, Eν = 1− 10 GeV

from PRL 113, 261802 (2014) Measurement of Coherent Production of π± in Neutrino and
Anti-Neutrino Beams on Carbon from Eν of 1.5 to 20 GeV



Neutrino production of charmed meson

Here we consider D pseudo scalar charmed meson production - heavy
quark production allows to extend the range of validity of collinear
factorization, the heavy quark mass playing the role of the hard scale.

Factorization theorem with HEAVY quark: → [J. C. Collins, PRD58]
Independently of the relative sizes of the heavy quark masses and Q

Size of the errors is a power of Λ/
√
Q2 +M2

D when
√
Q2 +M2

D is the
large scale.

Sensitivity to transversity GPDs. → [Pire,Sz.] PRL 115



Transversity

The transverse spin structure of the nucleon - that is the way quarks and
antiquarks spins share the polarization of a nucleon, when it is polarized
transversely to its direction of motion - is almost completely unknown.
Poorly known PDF, TMDs, GPDs.

Lattice result and SIDIS analysis suggest that transversity distributions are
not small

Transversity GPDs coupled to chiral-odd twist 3 pi-meson DA may explain
π electroproduction data at JLab [Goloskokov, Kroll], [Ahmad, Goldstein,
Liuti]

One can consider a 3-body final state process [Ivanov, Pire, Sz., Teryaev],
[Enberg, Pire, Sz.], [El Beiyad et al.], [Boussarie, Pire, Sz., Wallon]

→ Leading twist process

γN → ρρN ′ γN → πρN ′ γN → γρN ′



Neutrino-production of charmed meson

We consider the exclusive production of a pseudoscalar D−meson through the
reactions on a proton (p) or a neutron (n) target:

νl(k)p(p1) → l−(k′)D+(pD)p′(p2) ,

νl(k)n(p1) → l−(k′)D+(pD)n′(p2) ,

νl(k)n(p1) → l−(k′)D0(pD)p′(p2) ,

ν̄l(k)p(p1) → l+(k′)D−(pD)p′(p2) ,

ν̄l(k)p(p1) → l+(k′)D̄0(pD)n′(p2) ,

ν̄l(k)n(p1) → l+(k′)D−(pD)n′(p2) ,

in the kinematical domain where collinear factorization leads to a description of
the scattering amplitude in terms of nucleon GPDs and the D−meson
distribution amplitude, with the hard subprocesses:

W+d→ D+d , W+d→ D0u , W−d̄→ D−d̄ , W−d̄→ D̄0ū ,

convoluted with chiral-even or chiral-odd quark GPDs, and the hard
subprocesses:

W+g → D+g , W−g → D−g ,

convoluted with gluon GPDs.



Feynman diagrams

Figure: Feynman diagrams for the factorized amplitude for the νµN → µ−D+N ′

process; the thick line represents the heavy quark.

( a ) ( b ) ( c )

( d ) ( e ) ( f )

z

x + ξ x − ξ

D+
W+

1

Figure: Feynman diagrams for the factorized amplitude for the W+N → D+N ′

process involving the gluon GPDs; the thick line represents the heavy quark.



Neutrino-production of charmed meson

Standard notations of deep exclusive leptoproduction:

• P = (p1+p2)
2

, ∆ = p2 − p1, t = ∆2, xB = Q2

2p1·q
,

• y = p1·q
p1·k

and ε ' 2(1− y)/[1 + (1− y)2].

• n are light-cone vectors and ξ = − ∆·n
2P ·n is the skewness variable.

• The azimuthal angle ϕ is defined in the initial nucleon rest frame as:

sin ϕ =
~q · [(~q × ~pD)× (~q × ~kν)]

|~q||~q × ~pD||~q × ~kν |
,



Neutrino-production of charmed meson

• νN → µ−D+N differential cross section:

d4σ(νN → l−N ′D)

dy dQ2 dt dϕ
= Γ̃

{1 +
√

1− ε2

2
σ−− + εσ00

+
√
ε(
√

1 + ε+
√

1− ε)(cosϕ Reσ−0 + sinϕ Imσ−0)
}
,

with

Γ̃ =
G2
F

(2π)4

1

32y

1√
1 + 4x2

Bm
2
N/Q

2

1

(s−m2
N )2

Q2

1− ε ,

and the “cross-sections” σlm = ε∗µl Wµνε
ν
m are product of amplitudes for the

process W (εl)N → DN ′, averaged (summed) over the initial (final) hadron
polarizations.

• transverse amplitude WT q → Dq′ gets its leading term in the collinear QCD
framework as a convolution of chiral odd leading twist GPDs with a coefficient
function of order mc

Q2 or MD
Q2 (to be compared to the O( 1

Q
) longitudinal

amplitude)



GPD Models

• Chiral even GPDs: Goloskokov-Kroll model

• Transversity GPDs

1

2

∫
dz−

2π
eixP

+z− 〈p2, λ
′| ψ̄(− 1

2
z) iσ+i ψ( 1

2
z) |p1, λ〉

∣∣∣
z+=zT=0

=
1

2P+
ū(p2, λ

′)

[
Hq
T iσ

+i + H̃q
T

P+∆i −∆+P i

m2
N

+ EqT
γ+∆i −∆+γi

2mN
+ ẼqT

γ+P i − P+γi

mN

]
u(p1, λ).

The GPD HT (x, ξ, t) is equal to the transversity PDF in the ξ = t = 0 limit.
G-K provide parametrization (with some lattice input) for HT (x, ξ, t) and for
the combination ĒT (x, ξ, t) = 2H̃T (x, ξ, t) + ET (x, ξ, t). Since ẼT (x, ξ, t) is
odd under ξ → −ξ, most models find it vanishingly small. We will put it to
zero. We consider 3 models:

model 1 : H̃T (x, ξ, t) = 0;ET (x, ξ, t) = ĒT (x, ξ, t).

model 2 : H̃T (x, ξ, t) = HT (x, ξ, t);ET (x, ξ, t) = ĒT (x, ξ, t)− 2HT (x, ξ, t).

model 3 : H̃T (x, ξ, t) = −HT (x, ξ, t);ET (x, ξ, t) = ĒT (x, ξ, t) + 2HT (x, ξ, t).



Distribution amplitudes

• Usual heavy-light meson DA reads :

〈D+(PD)|c̄β(y)dγ(−y)|0〉 = i
fD
4

∫ 1

0

dzei(z−z̄)PD.y[(P̂D −MD)γ5]γβφD(z) ,

with z = k+

P+
D

,
∫ 1

0
dz φD(z) = 1, fD = 0.223 GeV, z̄ = 1− z and p̂ = pµγ

µ.

• We will parametrize φD(z):

φD(z) = 6z(1− z)(1 + CD(2z − 1))

with CD ≈ 1.5, which has a maximum around z = 0.7.
→ [T. Kurimoto, H. n. Li and A. I. Sanda, Phys. Rev. D 65]



Neutrino-production of charmed meson Transverse W

The transverse amplitude is then written as (τ = 1− i2):

TT =
−i2Cqξ(2MD −mc)√

2(Q2 +M2
D)

N̄(p2)

[
HT iσnτ + H̃T

∆τ

m2
N

+ ET
n̂∆τ + 2ξγτ

2mN
− ẼT

γτ

mN
]N(p1),

with Cq = 2π
3
CFαsVdc, in terms of transverse form factors that we define as :

FT = fD

∫
φD(z)dz

z̄

∫
F dT (x, ξ, t)dx

(x− ξ + βξ + iε)(x− ξ + αz̄ + iε)
,

where F dT is any d-quark transversity GPD, α =
2ξM2

D

Q2+M2
D
, β =

2(M2
D−m

2
c)

Q2+M2
D

.
• TT vanishes when mc = 0 = MD.

For chiral-even GPDs due to the collinear kinematics and the leading twist CF

For chiral-odd GPDs due to the odd number of γ matrices in the Dirac trace.



Neutrino-production of charmed meson Longitudinal W

The quark contribution to longitudinal amplitude of leading twist is a slight
modification of the calculation in:

B. Z. Kopeliovich, I. Schmidt and M. Siddikov, Phys. Rev. D 86 and D 89
G. R. Goldstein, O. G. Hernandez, S. Liuti and T. McAskill, AIP Conf. Proc. 1222

T qL =
−iCq
2Q

N̄(p2)

[
HLn̂− H̃Ln̂γ5 + EL

iσn∆

2mN
− ẼL

γ5∆.n

2mN

]
N(p1),

with the chiral-even form factors defined by

FL = fD

∫
φD(z)dz

z̄

∫
dx

F d(x, ξ, t)

x− ξ + αz̄ + iε

[
x− ξ + γξ

x− ξ + βξ + iε
+

Q2

Q2 + zM2
D

]
,

with γ = 2MD(MD−2mc)

Q2+M2
D

, β =
2(M2

D−m
2
c)

Q2+M2
D



Neutrino-production of charmed meson Longitudinal W

( a ) ( b ) ( c )

( d ) ( e ) ( f )
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1

The gluonic contribution to the amplitude reads:

T gL =
iCg
2

∫ 1

−1

dx
−1

(x+ ξ − iε)(x− ξ + iε)

∫ 1

0

dzfDφD(z) ·[
N̄(p2)[Hgn̂+ Eg

iσn∆

2m
]N(p1)MS

H

+N̄(p2)[H̃gn̂γ5 + Ẽg
γ5n.∆

2m
]N(p1)MA

H

]
≡ −iCg

2Q
N̄(p2)

[
Hgn̂+ Eg iσ

n∆

2m
+ H̃gn̂γ5 + Ẽg γ

5n.∆

2m

]
N(p1) ,

where the last line defines the gluonic form factors Hg, H̃g, Eg, Ẽg and
Cg = Tf

π
3
αsVdc with Tf = 1

2
and the factor −1

(x+ξ−iε)(x−ξ+iε) comes from the
conversion of the strength tensor to the gluon field.



The longitudinal cross section σ00

σ00 =
1

Q2

{
[ |CqHL + CgHg|2 + |CqH̃L − CgH̃g|2](1− ξ2)

+
ξ4

1− ξ2
[ |CqẼL − CgẼg|2 + |CqEL + CgEg|2]

−2ξ2Re[CqHL + CgHg][CqE∗L + CgE∗g ]

−2ξ2Re[CqH̃L − CgH̃g][CqẼ∗L − CgẼ∗g ]

}
.
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Figure: The y dependence of the longitudinal contribution to the cross section
dσ(νN→l−ND+)

dy dQ2 dt
(in pb GeV−4) for Q2 = 1 GeV2, ∆T = 0 and s = 20 GeV2 for a

proton (left panel) and neutron (right panel) target : total (quark and gluon, solid
curve) and quark only (dashed curve) contributions. GLUONS IMPORTANT!!!



The transverse cross section σ−−

σ−− =
16ξ2C2

q (mc − 2MD)2

(Q2 +M2
D)2

{
(1− ξ2)|HT |2 +

ξ2

1− ξ2
|E ′T |2 − 2ξRe[HT E ′

∗
T ]

}
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Figure: The y dependence of the transverse contribution to the cross section
dσ(νN→l−ND+)

dy dQ2 dt
(in pb GeV−4) for Q2 = 1 GeV2, ∆T = 0 and s = 20 GeV2 for a

proton (dashed curve) and neutron (solid curve) target.



The interference cross section σ−0

Vanishes at zeroth order in ∆T , the term linear in ∆T /mN reads
λ = τ∗ = 1 + i2

σ−0 =
ξ
√

2Cq
m

2MD −mc

Q(Q2 +M2
D)

{
− iH∗T [CqẼL − CgẼg]ξεpn∆λ + iE ′∗T εpn∆λ[CqH̃L − CgH̃g]

+ 2H̃∗T∆λ{CqHL + CgHg −
ξ2

1− ξ2
[CqEL + CgEg]}

+ E∗T∆λ{(1− ξ2)[CqHL + CgHg]− ξ2[CqEL + CgEg]}

− H∗T∆λ[CqEL + CgEg] + E ′∗T∆λξ[CqHL + CgHg + CqEL + CgEg]
}

In our kinematics, ∆1 = ∆x = ∆T , ∆y = 0, εpn∆λ = −i∆T .



Neutrino-production of charmed meson Observables

< cos ϕ > =

∫
cos ϕ dϕ d4σ∫

dϕ d4σ
= Kε

Reσ−0

σ00
,

< sin ϕ > = Kε
Imσ−0

σ00

• with Kε =
√

1+ε+
√

1−ε
2
√
ε

• Simple approximate results:

< cosϕ >≈ KRe[HD(2H̃φT + EφT + ĒφT )∗ − EDHφ∗T ]

8|H2
D|+ |Ẽ2

D|
,

< sinϕ >≈ KIm[HD(2H̃φT + EφT + ĒφT )∗ − EDHφ∗T ]

8|H2
D|+ |Ẽ2

D|
,

K = −
√

1 + ε+
√

1− ε
2
√
ε

2
√

2ξmc

Q

∆T

mN



Azimuthal dependence
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Figure: The Q2 dependence of the < cos ϕ > (solid curves) and < sin ϕ > (dashed
curves) moments normalized by the total cross section, for ∆T = 0.5 GeV, y = 0.7
and s = 20 GeV2. The three curves correspond to the three models explained in the
text, and quantify the theoretical uncertainty of our estimates.



Light meson production - importance of gluon contribution.
J. Wagner, B. Pire, LSz Phys. Rev. D 95 (2017)
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Figure: The Q2 dependence of the quark contribution (dotted curve) compared to the
gluon contribution (dashed line) and to the total (quark and gluon, solid curve)

longitudinal cross section dσ(νN→l−Nπ+)

dy dQ2 dt
(in pb GeV−4) for π+ production on a

proton target for y = 0.7,∆T = 0 and s = 20 GeV2.



Summary

Collinear QCD factorization allows to calculate neutrino production of
D−mesons in terms of GPDs down to Q2 = 0.

Chiral-odd and chiral-even GPDs contribute to the amplitude for different
polarization states of the W

The azimuthal dependence of the cross section allows to get access to
chiral-odd GPDs

most sensitive for transversity GPD is ν̄ p→ l+D̄0n

The behaviour of the proton and neutron target cross sections for D+,
D− and D0 production with ν and ν̄ enables to separate the u and d
quark contributions.

Within the reach of planned medium and high energy neutrino facilities
and experiments such as MINERνA and MINOS+.

Gluon contribution very important -> consequences for light mesons!


