The prospect of New Physics in b ightarrow c l u decays

Elena Venturini

SISSA and INFN Trieste

21/09/2018

Based on: hep-ph/1805.03209, with A.Azatov, D.Bardhan, D.Ghosh, F.Sgarlata

Getting to Grips with QCD - Summer Edition

Primošten, 18-22 September 2018

R_D and *R_{D*}* anomalies: Experimental Status

Standard Model usually explains very well experimental data BUT

In the Semileptonic B-meson decays there are hints of New Physics \rightarrow \rightarrow Lepton Non Universality

 $\label{eq:FOCUS: Charged current decays: R_{D^{(*)}} = \frac{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu\right)}{\mathcal{B}\left(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{I} \nu\right)}, \ I = e, \mu$

 $NP \sim 10 - 20\%$ SM:

Large BSM effect \Rightarrow

Possibile tension with other observables

Standard Model

$$\begin{split} \mathcal{L}_{\mathrm{eff}}^{b \to c \,\ell \,\nu}|_{\mathrm{SM}} &= -\frac{1}{\Lambda_{SM}^2} [\bar{c} \,\gamma^{\mu} \left(1 - \gamma_5\right) b] [\bar{\ell} \,\gamma_{\mu} \,P_L \,\nu] = -\frac{1}{\Lambda_{SM}^2} \left(\mathcal{O}_{\mathrm{VL}}^{cb\ell\nu} - \mathcal{O}_{\mathrm{AL}}^{cb\ell\nu} \right) \\ & \Lambda_{SM}^2 = \frac{1}{\sqrt{2} G_F V_{cb}} = (1.2 \, \mathrm{TeV})^2 \end{split}$$

< ∃⇒

< 17 >

• Model independent explanation of $R_{D^{(*)}}$: EFT DIM-6

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c \,\ell \,\nu} &= \mathcal{L}_{\text{eff}}^{b \to c \,\ell \,\nu}|_{\text{SM}} - \sum \frac{g_i^{cb\ell\nu}}{\Lambda^2} \mathcal{O}_i^{cb\ell\nu} + \text{h.c.} = \\ &= -\frac{1}{\Lambda_{SM}^2} \sum C_i^{cb\ell\nu} \mathcal{O}_i^{cb\ell\nu} + \text{h.c.} \quad (\ell = \text{e}, \mu, \tau) \end{split}$$

Assumption: Absence of $\nu_{\rm RH} \rightarrow$

Scenarios with $\nu_{\rm RH}$:

 $1804.04135,\ 1804.04642,\ 1807.10745$

$$\begin{split} \mathcal{O}_{\mathrm{VL}}^{cb\ell\nu} &= [\bar{c} \, \gamma^{\mu} \, b] [\bar{\ell} \, \gamma_{\mu} \, P_{L} \nu] \\ \mathcal{O}_{\mathrm{AL}}^{cb\ell\nu} &= [\bar{c} \, \gamma^{\mu} \gamma_{5} \, b] [\bar{\ell} \, \gamma_{\mu} \, P_{L} \nu] \\ \mathcal{O}_{\mathrm{SL}}^{cb\ell\nu} &= [\bar{c} \, b] [\bar{\ell} \, P_{L} \nu] \\ \mathcal{O}_{\mathrm{PL}}^{cb\ell\nu} &= [\bar{c} \, \gamma_{5} \, b] [\bar{\ell} \, P_{L} \nu] \\ \mathcal{O}_{\mathrm{PL}}^{cb\ell\nu} &= [\bar{c} \, \sigma^{\mu\nu} \, b] [\bar{\ell} \, \sigma_{\mu\nu} \, P_{L} \nu] \end{split}$$

◆ロ → ◆周 → ◆臣 → ◆臣 → ○臣 → のへで

Vector and Axial Vector Operators: Bounds at 1σ

Only
$$\mathcal{O}_{\mathrm{VL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{VL}}^{\tau}$$
 and $\mathcal{O}_{\mathrm{AL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{AL}}^{\tau}$

No QCD induced RG running: $C_{\rm VL,AL}^{\tau}(m_b) = C_{\rm VL,AL}^{\tau}(\Lambda)$

(E)

Scalar and Pseudo Scalar Operators: Bounds at 1σ

Only
$$\mathcal{O}_{
m SL}^{cb au
u}=\mathcal{O}_{
m SL}^{ au}$$
 and $\mathcal{O}_{
m PL}^{cb au
u}=\mathcal{O}_{
m PL}^{ au}$

 $R_D: C_{SL}^{\tau}$ only $R_{D^*}: C_{PL}^{\tau}$ only

Bound on $C_{\rm PL}^{\tau}$ from $\mathcal{B}(B_c \to \tau \nu)$ 30%: PRL 118 (2017) 081802 10%: PRD 96 (2017) 075011

 $\rightarrow R_{D^*} - \mathcal{B} \left(B_c \rightarrow \tau \, \nu \right) \text{ tension in}$ presence of $\mathcal{O}_{\mathrm{PL}}^{\tau}$ (Real C_{PL}^{τ})

Only
$$\mathcal{O}_{\mathrm{TL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{TL}}^{\tau}$$

★ 문 ► ★ 문 ►

æ

Scalar, Pseudo Scalar and Tensor Operators: Bounds at 1σ

Only
$$\mathcal{O}_{SL}^{cb\tau\nu} = \mathcal{O}_{SL}^{\tau}$$
, $\mathcal{O}_{PL}^{cb\tau\nu} = \mathcal{O}_{PL}^{\tau}$ and $\mathcal{O}_{TL}^{cb\tau\nu} = \mathcal{O}_{TL}^{\tau}$

Scenario as in scalar leptoquark models $R_2 \sim (\mathbf{3}, \mathbf{2})_{7/6}$ (Viable in case of imaginary WC [1803.10112, 1806.05689])

$$\left(\bar{c}P_{L}\nu\right)\left(\bar{\tau}P_{L}b\right) = -\frac{1}{8}\left[2(\mathcal{O}_{\mathrm{SL}}^{\tau} - \mathcal{O}_{\mathrm{PL}}^{\tau}) + \mathcal{O}_{\mathrm{TL}}^{\tau}\right] \rightarrow C_{\mathrm{SL}}^{\tau}(\Lambda) = -C_{\mathrm{PL}}^{\tau}(\Lambda) = 2C_{\mathrm{TL}}^{\tau}(\Lambda)$$

Assumption
$$\mathcal{C}^{ au}_{ ext{SL}} = -\mathcal{C}^{ au}_{ ext{PL}}$$

Adding \mathcal{O}_{TL}^{τ} to $\mathcal{O}_{SL}^{\tau} - \mathcal{O}_{PL}^{\tau}$:

Relaxed R_{D^*} - $\mathcal{B}(B_c \to \tau \nu)$ tension ($C_{\mathrm{PL}}^{ au} < 1$)

Zoomed upper left $R_D - R_{D^*}$ overlap: $c_{SL}^{\tau}(m_b) \in [0.08, 0.23] \text{ and } c_{TL}^{\tau}(m_b) \in [-0.11, -0.06]$ Scalar LQ expl.: Not Viable w/ Real $c_{S(T)L}^{\tau}$ + RG flow

Scenarios for $R_{D^{(*)}}$ explanation consistently with bounds from $\Delta F = 1$ ($\mathcal{B}(B_c \to \tau \nu)$) processes and with $R_{J/\Psi}$ measurements

- $\ \, {\mathcal O}^{\tau}_{\rm VL} \ \& \ {\mathcal O}^{\tau}_{\rm AL} \qquad \qquad \rightarrow {\sf Our} \ {\sf focus}$
- $\begin{array}{cccc} \bullet & \mathcal{O}_{\mathrm{SL}}^{\tau} \And & \mathcal{O}_{\mathrm{PL}}^{\tau} \And & \mathcal{O}_{\mathrm{TL}}^{\tau} & & \rightarrow \text{Viable scenario with scalar LQ} \\ & & \text{and imaginary WC [1803.10112, 1806.05689]} \end{array}$

伺 と くき と くき と しき

$SU(2)_L \times U(1)_Y$ gauge invariance

 $SU(2)_L imes U(1)_Y$ gauge invariant DIM-6 operators leading to b o c au
u

$$\mathcal{L}^{\dim 6} = -\frac{1}{\Lambda^2} \sum_{p'r's't'} \left\{ \left[C^{(3)}_{lq} \right]_{p'r's't'} (\bar{l'}_{p'} \gamma_{\mu} \sigma^I l'_{r'}) (\bar{q'}_{s'} \gamma^{\mu} \sigma^I q'_{t'}) + \text{h.c.} + \left[C^{(3)}_{lequ} \right]_{p'r's't'} (\bar{l'}_{p'} e'_{r'}) (\bar{d'}_{s'} q'_{t'}^{b'}) + \text{h.c.} + \left[C^{(3)}_{lequ} \right]_{p'r's't'} (\bar{l'}_{p'} \sigma_{\mu\nu} e'_{r'}) \epsilon_{jk} (\bar{q'}_{s'} q^{\mu} u'_{t'}) + \text{h.c.} + \left[C^{(3)}_{lequ} \right]_{p'r's't'} (\bar{l'}_{p'} \sigma_{\mu\nu} e'_{r'}) \epsilon_{jk} (\bar{q'}_{s'} \sigma^{\mu\nu} u'_{t'}) + \text{h.c.} + \left[C^{(3)}_{\ell q} \right]_{p'r'} (\phi^{\dagger} i \overleftarrow{D}_{\mu} \phi) (\bar{l'}_{p'} \sigma^{I} \gamma^{\mu} l'_{r'}) + \text{h.c.} + \left[C^{(3)}_{\ell q} \right]_{p'r'} (\phi^{\dagger} i \overleftarrow{D}_{\mu} \phi) (\bar{l'}_{p'} \sigma^{I} \gamma^{\mu} u'_{r'}) + \text{h.c.} + \left[C^{(3)}_{\ell q} \right]_{p'r'} (\phi^{\dagger} i \overleftarrow{D}_{\mu} \phi) (\bar{l'}_{p'} \sigma^{I} \gamma^{\mu} u'_{r'}) + \text{h.c.} + \left[C^{(3)}_{\ell q} \right]_{p'r'} (\phi^{\dagger} i \overleftarrow{D}_{\mu} \phi) (\bar{l'}_{p'} \sigma^{I} \gamma^{\mu} d'_{r'}) + \text{h.c.} + \left[C_{\ell qud} \right]_{p'r'} (\phi^{\dagger} i \overleftarrow{D}_{\mu} \phi) (\bar{u'}_{p'} \sigma^{I} \gamma^{\mu} d'_{r'}) + \text{h.c.} \right\}$$

• Gauge invariance \rightarrow Correlation of operators relevant for $R_{D^{(*)}}$ $[(\bar{\tau}\gamma^{\mu}P_L\nu_{\tau})(\bar{c}\gamma_{\mu}P_Lb), (\bar{\tau}\gamma^{\mu}P_L\nu_{\tau})W_{\mu}]$ with other operators (neutral current processes, $Z\tau\tau$, $Z\nu\nu$)

• $\mathcal{O}_{\phi q}^{(3)}$ and $\mathcal{O}_{\phi u d}$: Not leading to lepton flavour non universality

ヨト イヨト イヨト

FOCUS on $\mathcal{O}_{\mathrm{VL}}^{ au}$ and $\mathcal{O}_{\mathrm{AL}}^{ au}$ terms of $\mathcal{L}^{\mathrm{dim6}}$

$$\begin{array}{ll} \textbf{4 - fermion operator} \rightarrow & [\mathcal{O}_{lq}^{(3)}]'_{p'r's't'} = \left(\bar{l'}_{p'}\gamma_{\mu}\sigma^{l}l'_{r'}\right)\left(\bar{q'}_{s'}\gamma^{\mu}\sigma^{l}q'_{t'}\right)\\ \textbf{Scalar - fermion operator} \rightarrow & [\mathcal{O}_{\phi^{l}}^{(3)}]'_{p'r'} = \left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{l}\phi\right)\left(\bar{l'}_{p'}\sigma^{l}\gamma^{\mu}l'_{r'}\right) \end{array}$$

- Gauge invariance and lepton non universality (absence of ν_{RH}) \Rightarrow \Rightarrow Only V-A interactions at DIM-6
- \bullet Wilson Coefficients of \mathcal{O}_{VL}^{τ} and \mathcal{O}_{AL}^{τ}

$$\begin{split} \Delta C_{\mathrm{VL}}^{cb\tau\nu_3} &= -\Delta C_{\mathrm{AL}}^{cb\tau\nu_3} = \frac{\Lambda_{\mathrm{SM}}^2}{\Lambda^2} \Big[[\tilde{C}_{lq}^{(3)e\nu ud}]_{3323} + ([\tilde{C}_{lq}^{(3)\nu edu}]_{3322})^* \Big] \\ &\quad - \frac{\Lambda_{\mathrm{SM}}^2}{\Lambda^2} \Big[[\tilde{C}_{\phi l}^{(3)e\nu}]_{33} + ([\tilde{C}_{\phi l}^{(3)\nu e}]_{33})^* \Big] V_{cb} \end{split}$$
with $\tilde{C}_{lq}^{(3)} \rightarrow \mathsf{Mass}$ eigenstates basis

e.g. $[\tilde{C}_{lq}^{(3)e\nu ud}]_{prst} \equiv \sum_{p',r',s',t'} [C_{lq}^{(3)}]_{p'r's't'}^{\prime} (V_L^e)_{pp'}^{\dagger} (V_L^{\nu})_{r'r} (V_L^u)_{ss'}^{\dagger} (V_L^d)_{t't}$

御 と く ヨ と く ヨ と う り へ (や

Scalar - Fermion Operator

$$\Delta C_{\rm VL}^{cb\tau\nu_3} = -\Delta C_{\rm AL}^{cb\tau\nu_3} = -\frac{\Lambda_{\rm SM}^2}{\Lambda^2} \left[[\tilde{C}_{\phi l}^{(3)e\nu}]_{33} + ([\tilde{C}_{\phi l}^{(3)\nue}]_{33})^* \right] V_{cb}$$
$$[\mathcal{O}_{\phi l}^{(3)}]_{\mathbf{p}'r'} = \left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{l} \phi \right) \left(\bar{l'}_{p'} \sigma^{l} \gamma^{\mu} l'_{r'} \right) = \\= \left[-\frac{1}{2} \frac{g_2}{\cos\theta_W} Z_{\mu} \left(\overline{\nu'}_{p'} \gamma^{\mu} P_L \nu'_{r'} \right) + \frac{1}{2} \frac{g_2}{\cos\theta_W} Z_{\mu} \left(\overline{e'}_{p'} \gamma^{\mu} P_L e'_{r'} \right) \right] \\- \frac{g_2}{\sqrt{2}} W_{\mu}^+ \left(\overline{\nu'}_{p'} \gamma^{\mu} P_L e'_{r'} \right) - \frac{g_2}{\sqrt{2}} W_{\mu}^- \left(\overline{e'}_{p'} \gamma^{\mu} P_L \nu'_{r'} \right) \right] \left(v^2 + 2vh + h^2 \right)$$

• For $R_{D^{(*)}}$: $C_{\phi l}^{(3)'}$ - Modification of $W\!l \nu$ vertex with lepton non universality

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q ()

$W\tau\nu$, $Z\tau\tau$ and $Z\nu\nu$ bounds on Scalar - Fermion Operator

$$C^{(3)'}_{\phi I}$$
 - Modification of W $\tau \nu$ & Z $\tau \tau$ & Z $\nu \nu$ vertices

Wτν

$$\mathcal{L}_{W\tau\nu} = -\frac{g_2}{\sqrt{2}} (1 + \Delta g_W) \left(W^-_{\mu} \bar{\tau} \gamma^{\mu} P_L \nu_{\tau} + h.c. \right), \quad \Delta g_W = \left[\left(\left[\tilde{C}_{\phi l}^{(3)e\nu} \right] + \left[\tilde{C}_{\phi l}^{(3)\nu e} \right]^{\dagger} \right)_{33} \right] \frac{v^2}{\Lambda^2}$$

- LEP bounds:
$$\frac{Br(W^+ \to \tau^+ \nu)}{[Br(W^+ \to \mu^+ \nu) + Br(W^+ \to e^+ \nu)]/2} = 1.077 \pm 0.026$$

$$\Delta C_{\mathrm{VL}}^{ au} = -\Delta C_{\mathrm{AL}}^{ au} < 0.05
ightarrow$$
 Too small for $R_{D^{(*)}}$ explanation

- Indirect bounds from τ decay measurements

$$\Delta C_{
m VL}^{ au} = -\Delta C_{
m AL}^{ au} < 2.6 imes 10^{-3}
ightarrow$$
 Even stronger bounds

• $\mathbf{Z}\tau\tau$ and $\mathbf{Z}\nu\nu$

 $Z\tau\tau:|\Delta g_L^\tau|\lesssim 6\times 10^{-4}\Rightarrow \pmb{\Delta C}_{\rm VL}^\tau\lesssim 0.001 \rightarrow \text{Even stronger LEP bounds}$

$\implies \mathcal{O}_{{\rm d} l}^{(3)}$ is NOT sufficient ALONE to explain $\mathsf{R}_{\mathsf{D}^{(*)}}$

[hep-ex/0511027], [Prog. Part. Nucl. Phys. 75 (2014) 41-85], [hep-ex/0509008]

신문에 문

4 - Fermion operator

$$\Delta C_{\rm VL}^{cb\tau\nu_3} = -\Delta C_{\rm AL}^{cb\tau\nu_3} = \frac{\Lambda_{\rm SM}^2}{\Lambda^2} \Big[[\tilde{C}_{lq}^{(3)e\nu ud}]_{3323} + ([\tilde{C}_{lq}^{(3)\nu edu}]_{3322})^* \Big]$$

 $\mathcal{O}_{lq}^{(3)}$ contribution to $\mathsf{R}_{\mathsf{D}^{(*)}}$

$$\begin{aligned} \mathbf{C}_{lq}^{(3)'}\mathcal{O}_{lq}^{(3)} &= [C_{lq}^{(3)}]'_{p'r's't'} \left(\bar{l'}_{p'}\gamma_{\mu}\sigma'l'_{r'}\right) \left(\bar{q'}_{s'}\gamma^{\mu}\sigma'q'_{t'}\right) \supset \\ \supset -2 \left(([C_{lq}^{(3)}]'_{3313} + ([C_{lq}^{(3)}]'_{3331})^*) \mathbf{V}_{cd} + ([C_{lq}^{(3)}]'_{3323} + ([C_{lq}^{(3)}]'_{3322})^*) \mathbf{V}_{cs} \\ &+ ([C_{lq}^{(3)}]'_{3333} + ([C_{lq}^{(3)}]'_{3333})^*) \mathbf{V}_{cb} \right) (\bar{\tau}\gamma^{\mu} \mathbf{P}_{\mathbf{L}}\nu_{\tau}) (\bar{\mathbf{c}}\gamma_{\mu} \mathbf{P}_{\mathbf{L}}\mathbf{b}) \end{aligned}$$

C' in the basis with $d'_{p'}=d_p$ and $e'_{p'}=e_p\to V^{d,e}_L={\bf 1}_{3\times 3}$ [Arbitrary choice w/o any loss of generality]

Correlation of $R_{D(*)}$ with neutral current operators

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

 $\mathsf{R}_{\mathsf{D}^{(*)}}$ lower bound on $\mathsf{C}_{\mathsf{lq}}^{(3)'}$

$$([\tilde{C}_{lq}^{(3)e\nu ud}]_{3323} + ([\tilde{C}_{lq}^{(3)\nu edu}]_{3332})^*) \gtrsim 0.06 \left(\frac{\Lambda^2}{\text{TeV}^2}\right)$$

$$\Downarrow$$

$$\begin{split} &([C_{lq}^{(3)}]'_{3313} + ([C_{lq}^{(3)}]'_{3331})^*)V_{cd} + \\ &+ ([C_{lq}^{(3)}]'_{3323} + ([C_{lq}^{(3)}]'_{3332})^*)V_{cs} + \\ &+ ([C_{lq}^{(3)}]'_{3333} + ([C_{lq}^{(3)}]'_{3333})^*)V_{cb} \gtrsim 0.06 \left(\frac{\Lambda^2}{\mathsf{TeV}^2}\right) \end{split}$$

(ロ) (部) (E) (E) (E)

 $R_{D^{(*)}}$ with $\mathcal{O}_{la}^{(3)}$: Correlation with $\mathcal{B}(B^0 \to \pi^0(K^{*0})\bar{\nu}\,\nu)$ and $\mathcal{B}(B_u \to \tau\,\nu_{\tau})$

Bounds on $[C_{lq}^{(3)}]'_{3313}$ and $[C_{lq}^{(3)}]'_{3323}$ from $\Delta F = 1$ processes

• Constraints on $[C_{lq}^{(3)}]'_{3313}$

• $\mathcal{B}(B^0 o \pi^0 ar{
u} \,
u)$ bound [BELLE Collaboration, Phys. Rev. D96 (2017) 091101]

 $-0.018 \lesssim ([C_{lq}^{(3)}]'_{3313} + [C_{lq}^{(3)}]'^{*}_{3331}) {
m TeV}^2/\Lambda^2 \lesssim 0.023$

• $\mathcal{B}(B_u \to \tau \,
u_{ au})$ bound [BELLE II Collaboration, PoS. EPS-HEP2017 (2017) 226]

$$-0.15 \lesssim ([C^{(3)}_{lq}]'_{3313} + [C^{(3)}_{lq}]'^{*}_{3331}) {
m TeV}^2/\Lambda^2 \lesssim 0.025$$

2 Constraints on $[C_{lq}^{(3)}]'_{3323}$

• $\mathcal{B}(B^0 \to K^{*0} \, \bar{
u} \nu)$ bound [BELLE Collaboration, Phys. Rev. D96 (2017) 091101]

$$-0.005 \lesssim ([C_{lq}^{(3)}]'_{3323} + [C_{lq}^{(3)}]'^{*}_{3332}) \text{TeV}^2/\Lambda^2 \le 0.025$$

 $R_{D^{(*)}}$ with $\mathcal{O}_{la}^{(3)}$: Correlation with $\mathcal{B}(B^0 \to \pi^0(K^{*0})\bar{\nu}\,\nu)$ and $\mathcal{B}(B_u \to \tau\,\nu_{\tau})$

Bounds on
$$[C_{lq}^{(3)}]'_{3313}$$
 and $[C_{lq}^{(3)}]'_{3323}$ from $\Delta F = 1$ processes
 $\Rightarrow ([C_{lq}^{(3)}]'_{3313}$ and $([C_{lq}^{(3)}]'_{3323}$ terms of $\mathcal{O}_{lq}^{(3)}$ contribution to $R_{D^{(*)}}$
AT MOST $\sim 0.03\Lambda^2/\text{TeV}^2$

 $R_{D^{(*)}}$ lower bound on $[C^{(3)}_{lq}]'_{3333} \rightarrow$

$$\rightarrow ([\textbf{C}_{lq}^{(3)}]'_{3333} + [\textbf{C}_{lq}^{(3)}]'^{\,*}_{3333})\textbf{V}_{cb} \gtrsim 0.03 \left(\frac{\textbf{\Lambda}^2}{\text{TeV}^2}\right)$$

御 と く き と く き と … き

$R_{D^{(*)}}$ with $\mathcal{O}_{la}^{(3)}$: Correlation with $Z\tau\tau$ vertex

Bounds on $[C^{(3)}_{lq}]'_{3333}$ from $Z\tau\tau$ vertex

• Constraints on
$$[\mathbf{C}_{lq}^{(3)}]'_{3333}$$

• $\mathcal{O}_{lq}^{(3)}$ contribution to the NC interaction $(\bar{\tau}\gamma^{\mu}\mathbf{P}_{\mathbf{L}}\tau)(\bar{\mathbf{t}}\gamma_{\mu}\mathbf{P}_{\mathbf{L}}\mathbf{t})$
 $[\tilde{c}_{lq}^{(3)eeuu}]_{3333} + [\tilde{c}_{lq}^{(3)eeuu}]^*_{3333} \sim ([C_{lq}^{(3)}]'_{3333} + [C_{lq}^{(3)}]'^*_{3333}) |V_{tb}|^2$
With $\mathcal{B}(\mathcal{B}^0 \to \pi^0 \bar{\nu} \nu)$, $\mathcal{B}(\mathcal{B}_u \to \tau \nu_{\tau})$, $\mathcal{B}(\mathcal{B}^0 \to K^{*0} \bar{\nu} \nu)$ and $jj \to \tau \tau$ bounds
• $(\bar{\tau}\gamma^{\mu}\mathbf{P}_{\mathbf{L}}\tau)(\bar{\mathbf{t}}\gamma_{\mu}\mathbf{P}_{\mathbf{L}}\mathbf{t}) \to 1\text{-loop RG running of } \mathcal{O}_{\phi l}^{(3)}$
 $1\text{-loop contribution to } \Delta g_L^{\tau}$ [Phys. Rev. Lett. 118 (2017) 011801]
 $\mathcal{I}_{L} = \mathcal{I}_{L} = \mathcal{I}_{L} = \mathcal{I}_{L} = \mathcal{I}_{L}$
 $\Rightarrow \text{LEP bounds: } \left| [C_{lq}^{(3)}]'_{3333} + [C_{lq}^{(3)}]'_{3333} \right| \lesssim \frac{0.017}{V_{cb}} \left(\frac{\Lambda}{\text{TeV}}\right)^2 \frac{1}{1+0.6 \log \frac{\Lambda}{reV}}$

Too small for $R_{D^{(*)}}$ explanation

ゆ と く ヨ と く ヨ と

Possibility to cure $R_{D^{(*)}}\text{-}$ $\Delta F=1~$ and NC observables tension \rightarrow \rightarrow $\mathcal{O}_{lq}^{(3)}$ is NOT sufficient ALONE

Combination with
$$\mathcal{O}_{lq}^{(1)} = \left(\bar{l'}\gamma_{\mu}l'\right)\left(\bar{q'}\gamma^{\mu}q'\right)$$
:

Cancellation with $\mathcal{O}_{lq}^{(3)}$ in $b \to s \bar{\nu} \nu$ (or $b \to s \bar{\tau} \tau$) and Δg_L^{τ} (or Δg_L^{ν}) [Phys. Rev. Lett. 118 (2017) 011801], [JHEP 11 (2017) 044], [JHEP 09 (2017) 061]

BUT it is NOT possible to cancel SIMULTANEOUSLY:

- $b
 ightarrow s ar{
 u}
 u$ and $b
 ightarrow s ar{ au} au$
- $\Delta g_L^{ au}$ and $\Delta g_L^{
 u}$

Combination of Δg_L^{τ} , Δg_L^{ν} and Δg_W bounds \Rightarrow \Rightarrow Scenario with $[C_{lq}^{(3)}]'_{3333}$ -dominated $R_{D^{(*)}}$ RULED OUT even in presence of both $\mathcal{O}_{lq}^{(3)}$ & $\mathcal{O}_{lq}^{(1)}$

Possible scenarios

- Scenario I: $[C_{lq}^{(3)}]'_{323}$ -dominated $R_{D^{(*)}}$ and $\mathcal{B}(B^0 \to K^{*0} \bar{\nu} \nu)$ bound softened by $\mathcal{O}_{lq}^{(1)}$ - $\mathcal{O}_{lq}^{(3)}$ cancellation
- Scenario II: $[C_{lq}^{(3)}]'_{3333}$ -dominated $R_{D^{(*)}}$ and $\Delta g_L^{\tau,\nu}$ bounds softened by appropriate additional effective operators

$R_{D^{(*)}}$ correlation with $\Delta F = 2$ processes (CH and PC)

 $R_{D^{(\ast)}}$ correlation with $\Delta F=2$ processes: requirement of UV assumption

- Composite Higgs (MCHM5) [Phys. Lett. 136B (1984) 183-186] : Higgs as pNGB of $SO(5) \rightarrow SU(2)_L \times SU(2)_R$
- Partial Compositeness (PC) and Two site model [Nucl. Phys. B365 (1991) 259-278] : SM fermion masses arise from linear mixing with composite fermions

Elementary ($\tilde{\psi}$, A_{μ}) - Composite ($\tilde{\mathcal{O}}$, $\tilde{\rho}_{\mu}$) Mixing \Rightarrow \Rightarrow SM fermion - Heavy vector interaction

$$\bar{\psi'}_{i}\left[\sqrt{g_{*}^{2}-g^{2}}\left[\hat{s}^{\dagger}\,T_{A}^{\mathrm{co}}\hat{s}\right]_{j}^{i}-\frac{g^{2}}{\sqrt{g_{*}^{2}-g^{2}}}\left[\hat{c}^{\dagger}\,T_{A}^{\mathrm{el}}\hat{c}\right]_{j}^{i}\right]\gamma^{\mu}\psi'^{j}\rho_{\mu}^{A}$$

FOCUS: DIM-6 4 - Fermion Operator $(g_* \gg g)$

$$\frac{\mathbf{g}_{*}^{2}}{\mathbf{M}_{*}^{2}} \left[\bar{\psi}' \, \hat{\mathbf{s}}^{\dagger} \mathbf{T}_{\mathbf{A}}^{\mathrm{co}} \hat{\mathbf{s}} \, \gamma^{\mu} \psi' \right] \left[\bar{\psi}' \, \hat{\mathbf{s}}^{\dagger} \mathbf{T}_{\mathbf{A}}^{\mathrm{co}} \hat{\mathbf{s}} \, \gamma_{\mu} \psi' \right]$$

$R_{D(*)}$ in Composite Higgs Model and Partial Compositeness

Contribution to $R_{D^{(*)}}$: Exchange of heavy charged $SU(2)_L$ vector $(\rho_{L\mu}^{\pm})$

$$\mathcal{L}_{b\to c\,\tau\,\nu} = -\frac{g_*^2}{2M_*^2} \left(\bar{\tau}_L \left[V_L^{e^\dagger} \hat{s}_l^{\,\dagger} \hat{s}_l V_L^{\nu} \right]_3^3 \gamma^{\mu} \nu_{\tau L} \right) \left(\bar{c}_L \left[V_{\mathsf{CKM}} V_L^{d^\dagger} \hat{s}_q^{\,\dagger} \hat{s}_q V_L^{d} \right]_3^2 \gamma^{\mu} b_L \right)$$

$$|V_{cd}| \left| \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^d \right]_3^1 \right| + |V_{cs}| \left| \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^d \right]_3^2 \right| + |V_{cb}| \left| \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^d \right]_3^3 \right| \gtrsim 0.2 \left(\frac{M_*/g_*}{\text{TeV}} \right)^2$$

□ > < E > < E > E - のへで

Contribution to $\Delta F = 2$: Exchange of heavy neutral SU(3), SU(2)_{L,R}, U(1)_X vectors ($\rho_{3\mu}$, $\rho_{L,R\mu}^3$, $\rho_{X\mu}$)

$$\mathcal{L}_{\Delta F=2} \simeq \frac{g_*^2}{M_*^2} \left(\bar{\psi}_{i\,L} \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^d \right]_j^i \gamma^{\mu} \psi_{j\,L} \right)^2$$

Upper bounds on $\overline{K} - K$, $\overline{B}_d - B_d$ and $\overline{B}_s - B_s$ mixings \Rightarrow

$$\Rightarrow \text{ Upper bounds on } \left| \left[\mathsf{V}_{\mathsf{L}}^{\mathsf{d}\dagger} \hat{\mathsf{s}}_{\mathsf{q}}^{\dagger} \hat{\mathsf{s}}_{\mathsf{q}} \mathsf{V}_{\mathsf{L}}^{\mathsf{d}} \right]_{j}^{\mathsf{r}} \right|, \, \mathsf{i} \neq \mathsf{j}$$

CH Model and PC: $\Delta F = 2$ and $R_{D^{(*)}}$ correlation

 $\Delta F = 2 \& R_{D^{(*)}}$ bounds

$$\begin{aligned} 10^{-3} |V_{cd}| \; \frac{(M_*/\text{TeV})}{g_*} + 4 \times 10^{-3} |V_{cs}| \; \frac{(M_*/\text{TeV})}{g_*} + |V_{cb}| \gtrsim 0.2 \left(\frac{M_*/\text{TeV}}{g_*}\right)^2 \\ \implies |V_{cb}| \gtrsim 0.2 \left(\frac{M_*/\text{TeV}}{g_*}\right)^2 \implies \end{aligned}$$

$$\implies M_*/g_* \lesssim 0.45 \, \text{TeV} \implies f \lesssim 0.64 \, \text{TeV}$$

f: Compositeness Scale

Tension with EW precision measurements: $f\gtrsim 1.2\,{ m TeV}$

[JHEP 08 (2013) 106], [Eur. Phys. J. C74 (2014) 3046]

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Model independent explanation of $R_{K^{(*)}}$: EFT DIM-6

$$\mathcal{L}_{b
ightarrow s \mu \mu} = -rac{1}{\Lambda^2} \, (ar{s} \gamma_\mu P_L \, b) (ar{\mu} \gamma^\mu P_L \, \mu)$$

 $R_{K^{(*)}}$ lower bounds at 1 $\sigma \implies 1/\Lambda^2 \gtrsim 1/(38\,{
m TeV})^2$

• CH Model and PC \rightarrow Contribution to $R_{K^{(*)}}$: Exchange of heavy neutral SU(2)_{L,R}, U(1)_x vectors $(\rho_{L,R_{\mu}}^{3}, \rho_{X_{\mu}})$

$$\frac{g_{*2}^2}{2M_{*2}^2} \left(\bar{s} \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^{d} \right]_3^2 \gamma_\mu P_L b \right) \left(\bar{\mu} \left[V_L^{e\dagger} \hat{s}_l^{\dagger} \hat{s}_l V_L^{e} \right]_2^2 \gamma^\mu P_L \mu \right)$$

Possibility to satisfy $\Delta F = 2 \ \& \ R_{K^{(*)}} bounds$

CH Model and PC: $R_{D(*)}$, NC observables and EW precision tests

CH Model and PC + $R_{D^{(*)}}$ generated by $\rho_{L \mu}^{\pm}$ exchange + No other assumptions \Downarrow $\mathbf{f} \lesssim \mathcal{O}(\text{TeV})$

Favoured by electroweak hierarchy problem

• Tension with EW precision measurements: Incompatibility unless additional UV contribution

同 トイヨ トイヨ ト ヨ うらぐ

 $\label{eq:Enhancement of R_{D^{(*)}}} \mbox{without tree-level modification of } \Delta F = 2 \mbox{ processes}$

Vector Leptoquark $V^{\mu}_{LQ} \sim ({f 3},{f 1})_{2/3}~(U_1)
ightarrow$

$$\mathcal{L}_{LQ} = -g_* \left(\bar{q}'_{Li} \left[\hat{s}^{\dagger}_{q} \hat{s}_{l} \right]^{i}_{\ j} \gamma_{\mu} \, l'_{Lj} \right) \, V^{\mu}_{LQ}$$

[Eur. Phys. J. C76 (2016) 67], [Eur. Phys. J. C77 (2017) 8], [1712.06844]

Contribution to $R_{D^{(*)}} \rightarrow Exchange of heavy V^{\mu}_{LQ}$

$$\mathcal{L}_{b\to c\,\tau\,\nu} \stackrel{\mathrm{Fierz}}{=} -\frac{g_*^2}{2M_*^2} \left[V_{\mathsf{CKM}} V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_l V_L^{\nu} \right]_3^2 \left[V_L^{e\dagger} \hat{s}_l^{\dagger} \hat{s}_q V_L^{d} \right]_3^3 \left(\bar{c}_L \gamma^{\mu} \, b_L \right) \left(\bar{\tau}_L \gamma^{\mu} \, \nu_{\tau L} \right) \right]_3 \left(\bar{c}_L \gamma^{\mu} \, b_L \right) \left(\bar{\tau}_L \gamma^{\mu} \, \nu_{\tau L} \right) \left(\bar$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Composite Higgs Model with Vector Leptoquark: $\Delta F = 2$ and $R_{D(*)}$ bounds

Contribution to $R_{D^{(*)}} \rightarrow$ Exchange of heavy V^{μ}_{LQ} and $\rho^{\pm}_{L\mu}$ $\Delta F = 2 \& R_{D^{(*)}}$ bounds

Assumption: Only third generation mixes strongly with composite sector $\downarrow V_{LQ}^{\mu} \text{ contribution to } R_{D^{(*)}} \text{ is } V_{cb} \text{ dominated: } [V_L^{d\dagger} \hat{s_q}^{\dagger}]_3^{1,2} \ll [V_L^{d\dagger} \hat{s_q}^{\dagger}]_3^3 \sim 1$

$$\mathbf{V}^{\mu}_{\mathbf{LQ}} +
ho^{\pm}_{\mathbf{L}\ \mu}: \qquad 2V_{cb} \gtrsim 0.2 \left(rac{M_*/g_*}{\mathsf{TeV}}
ight)^2 \Longrightarrow$$

$$\implies M_*/g_* \lesssim 0.63 \, \text{TeV} \implies f \lesssim \ 0.90 \, \text{TeV}$$

Increase of f upper bound by a factor $\sqrt{2}$ \Rightarrow

 \Rightarrow Almost 2σ compatibility with EW precision measurements

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � � �

FOCUS: $R_{D^{(*)}}$ correlation with other EW observable ($\Delta F = 1, 2, Z\tau\tau, Z\nu\nu, W\tau\nu$) \Rightarrow Constraints on NP explanation

• Model independent EFT analysis with Vector, Axial Vector, Scalar, Pseudo Scalar, Tensor operators. Possible scenarios:

Vector & Axial Vector operators
 Scalar & Pseudo Scalar & Tensor operators

- EFT with $SU(2)_L \times U(1)_Y$ invariance \Rightarrow Within $R_{D^{(*)}}$ with \mathcal{O}_{VL}^{τ} and \mathcal{O}_{AL}^{τ} :
 - IFU violation only in V-A interactions
 - **3** Scalar Fermion operator $\mathcal{O}_{\phi I}^{(3)}$ NOT sufficient ALONE for $R_{D(*)}$ ($Z\tau\tau$, $Z\nu\nu$, $W\tau\nu$)
 - **3** 4 Fermion operator $\mathcal{O}_{la}^{(3)}$ NOT sufficient ALONE for $R_{D(*)}$ ($Z\tau\tau$, $\Delta F = 1$)
 - \Rightarrow Need of other operators $(\mathcal{O}_{la}^{(1)})$ and appropriate UV completion

(行) (モート (モート)

Summary

- MCHM5 and PC with (without) vector LQ
 - **()** Softened $\Delta F = 1$ and $Z\tau\tau Z\nu\nu$ bounds
 - **(a)** $R_{D(*)} \& \Delta F = 2$ correlation \implies Upper bound on the scale of compositeness f $f \leq 0.90 (0.64) \text{TeV}$

Favoured by EW hierarchy problem

Tension with direct searches and EWPT unless additional cancellation

CC Flavour Anomalies \implies Potential probes of NP at TeV scale

Non generic NP in the dynamics of flavour transitions \implies Need of high precision analysis of B - physics data

Thank you!

2

∃ ► < ∃ ►</p>

DIM-8 Operators that contribute to $b \rightarrow c \tau \nu$, w.r.t. DIM-6 Operators, have extra factors:

$$\left(\frac{\partial}{\overline{\Lambda}}\right)^2 \qquad \left(\frac{\phi}{\overline{\Lambda}}\right)^2 \qquad \left(\frac{\phi}{\overline{\Lambda^2}}\right)$$

where ϕ is the Higgs doublet

In $b \rightarrow c \tau \nu$ amplitude, DIM-8 contribution, w.r.t. DIM-6 one, has extra factors:

DIM-8 contribution is suppressed w.r.t. DIM-6 contribution

Model with 2 scalar leptoquarks

•
$$R_2 \sim (\mathbf{3}, \mathbf{2})_{7/6} \rightarrow C_{\mathrm{SL}}^{\tau}(\Lambda) = -C_{\mathrm{PL}}^{\tau}(\Lambda) = 2C_{\mathrm{TL}}^{\tau}(\Lambda)$$

After RG flow $C_{\mathrm{SL}}^{\tau}(m_b) \simeq 4C_{\mathrm{TL}}^{\tau}(m_b)$

•
$$S_1 \sim (\mathbf{\bar{3}}, \mathbf{1})_{1/3} \rightarrow C_{VL}^{\tau}(\Lambda) = -C_{AL}^{\tau}(\Lambda)$$

 $C_{SL}^{\tau}(\Lambda) = -C_{PL}^{\tau}(\Lambda) = -2C_{TL}^{\tau}(\Lambda)$
After RG flow $C_{SL}^{\tau}(m_b) \simeq -4C_{TL}^{\tau}(m_b)$

It is possible to choose particular R_2 and S_1 couplings in UV theory such that there is a cancellation of WC $C_{\text{SL}}^{\tau}(m_b)(=-C_{\text{PL}}^{\tau}(m_b))$ in IR theory

・ 同 ト ・ ヨ ト ・ ヨ ト …

Bounds from $\mathcal{B}(B_c \to \tau \nu)$

(ロ) (部) (E) (E) (E)

Only
$$\mathcal{O}_{\mathrm{VL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{VL}}^{\tau}$$
, $\mathcal{O}_{\mathrm{AL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{AL}}^{\tau}$, $\mathcal{O}_{\mathrm{SL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{SL}}^{\tau}$ amd $\mathcal{O}_{\mathrm{PL}}^{cb\tau\nu} = \mathcal{O}_{\mathrm{PL}}^{\tau}$

 $C_{
m VL}^{ au}=-C_{
m AL}^{ au}$ and $C_{
m SL}^{ au}=\pm C_{
m PL}^{ au}$

Adding $\mathcal{O}^{ au}_{\mathrm{SL,PL}}$ to $\mathcal{O}^{ au}_{\mathrm{VL,AL}}$

\downarrow

Only an extension of $\mathcal{O}_{VL,AL}^{\tau}$ only:

 $[C_{\mathrm{VL}}^{ au}, C_{\mathrm{SL}}^{ au}] = [1.1, 0]$ inside overlap region

< 注 → < 注 → ...

For a model: 1712.01368

Two Site Model: Elementary - Composite Mixing

Two site model

Elementary SectorComposite Sector $G^{elem} = SU(3) \times SU(2)_L \times U(1)_Y$ $G^{comp} = U(1)_X \times SU(3) \times SU(2)_L \times SU(2)_R$ $\tilde{\psi}$: fermions, A_{μ} : bosons $\tilde{\mathcal{O}}$: fermions, $\tilde{\rho}_{\mu}$: bosons

Elementary ($\tilde{\psi}$, A_{μ}) - Composite ($\tilde{\mathcal{O}}$, $\tilde{\rho}_{\mu}$) Mixing

$$\mathbf{G}^{ ext{elem}} imes \mathbf{G}^{ ext{comp}} o \mathbf{G}^{ ext{SM}} \,, \quad ext{with} \; \mathcal{T}_Y^{comp} = \mathcal{T}_X^{comp} + \mathcal{T}_R^{3\, comp}$$

Fermion sector

$$\left(\begin{array}{c} \tilde{\psi} \\ \tilde{\mathcal{O}} \end{array}\right) = \left(\begin{array}{c} \hat{c} & \dots \\ \hat{s} & \dots \end{array}\right) \left(\begin{array}{c} \psi' \\ \mathcal{O} \end{array}\right)$$

Vector sector

$$\left(\begin{array}{c} {\cal A}_{\mu}\\ \tilde{\rho}_{\mu}\end{array}\right) \rightarrow \left(\begin{array}{c} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{array}\right) \left(\begin{array}{c} {\cal A}_{\mu}^{SM}\\ \rho_{\mu}\end{array}\right)\,,\qquad \cos\theta = \frac{g_{*}}{\sqrt{g_{*}^{2} + g_{el}^{2}}}$$

 $\psi', A^{SM}_{\mu} \to SM$ massless fields $g_{el} \to G^{elem}, \quad g_* \to G^{comp}$

◎ > < 注 > < 注 > 注 のへで

	$SU(3)^{co}$	$SU(2)_L^{co}$	$SU(2)_R^{co}$	$U(1)_X^{co}$	_		crt(a)el	CII/(0)e	11(1) el
\tilde{O}_{q_1}	3	2	2	2/3	_	_	30(3)-	$SU(2)_{\tilde{L}}$	U(1)Y
\tilde{O}_{q_2}	3	2	2	-1/3		L	<u> </u>	2	1/0
\tilde{O}_u	3	1	1	2/3	-	R i	<u> </u>	1	2/3
\tilde{O}_d	3	1	1	-1/3	-	R	1	- 1	-1/3
\tilde{O}_{ℓ_1}	1	2	2	0	-	L	1		-1/2
\tilde{O}_{ℓ_2}	1	2	2	$^{-1}$	-	R	1	1	-1
\tilde{O}_e	1	1	1	$^{-1}$	v	R	1	1	0

$$\begin{split} \tilde{\mathcal{O}}_{q_1} = \left(\tilde{\mathcal{O}}_{\text{EX}}^{a} \tilde{\mathcal{O}}_{\text{SM}}^{a} \right), \qquad \tilde{\mathcal{O}}_{\text{SM}}^{a} = \left(\begin{array}{c} U \\ D \end{array} \right), \qquad \tilde{\mathcal{O}}_{\text{EX}}^{a} = \left(\begin{array}{c} \chi_{5/3} \\ \chi_{2/3} \end{array} \right) \\ & 5\text{-plet} \quad \Psi_{q_1} = \left(\tilde{\mathcal{O}}_{q_1}, \tilde{\mathcal{O}}_{u} \right) \end{split}$$

$$\tilde{\mathcal{O}}_{q_2} = \left(\tilde{\mathcal{O}}_{SM}^{q_2} \tilde{\mathcal{O}}_{EX}^{q_2} \right), \qquad \tilde{\mathcal{O}}_{SM}^{q_2} = \left(\begin{array}{c} U'\\ D' \end{array} \right), \qquad \tilde{\mathcal{O}}_{EX}^{q_2} = \left(\begin{array}{c} \chi_{-1/3}\\ \chi_{-4/3} \end{array} \right)$$

5-plet $\Psi_{q_2} = \left(\tilde{\mathcal{O}}_{q_2}, \tilde{\mathcal{O}}_{d} \right)$

$$\begin{split} \bar{\mathcal{O}}_{\ell_1} &= \left(\bar{\mathcal{O}}_{\text{EX}}^{\ell_1} \bar{\mathcal{O}}_{\text{SM}}^{\ell_1} \right), \qquad \bar{\mathcal{O}}_{\text{SM}}^{\ell_1} = \left(\begin{array}{c} N \\ E \end{array} \right), \qquad \bar{\mathcal{O}}_{\text{EX}}^{\ell_1} = \left(\begin{array}{c} \chi_{+1} \\ \chi_0 \end{array} \right) \\ & 5\text{-plet} \quad \Psi_{\ell_1} = \left(\bar{\mathcal{O}}_{\ell_1}, \bar{\mathcal{O}}_N \right) \\ \bar{\mathcal{O}}_{\ell_2} &= \left(\bar{\mathcal{O}}_{\text{SM}}^{\ell_2} \bar{\mathcal{O}}_{\text{EX}}^{\ell_2} \right), \qquad \bar{\mathcal{O}}_{\text{SM}}^{\ell_2} = \left(\begin{array}{c} N' \\ E' \end{array} \right), \qquad \bar{\mathcal{O}}_{\text{EX}}^{\ell_2} = \left(\begin{array}{c} \chi_{-1} \\ \chi_{-2} \end{array} \right) \\ & 5\text{-plet} \quad \Psi_{\ell_2} = \left(\bar{\mathcal{O}}_{\ell_2}, \bar{\mathcal{O}}_e \right) \end{split}$$

Elena Venturini The prospect of New Physics in b
ightarrow cl
u decays

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙ > ()

Two Site Model: $\Delta F = 2$ with 4 - Fermion Operator

Contribution to $\Delta F = 2$: Exchange of heavy neutral SU(3), SU(2)_{L,R}, U(1)_X vectors ($\rho_{3\mu}$, $\rho_{L,R\mu}^3$, $\rho_{X\mu}$)

$$\begin{split} \mathcal{L}_{\Delta F=2} &= -\text{const} \times \frac{g_*^2}{M_*^2} \left(\bar{\psi}_{i\,L} \left[V_L^{d\dagger} \hat{s}_q^{\dagger} \hat{s}_q V_L^d \right]_{j}^i \gamma^{\mu} \psi_{j\,L} \right)^2 \\ \text{const} &= \frac{M_*^2}{2g_*^2} \left(\frac{1}{3} \frac{g_{*3}^2}{M_{*3}^2} + \frac{1}{2} \frac{g_{*2}^2}{M_{*2}^2} + \frac{4}{9} \frac{g_{*X}^2}{M_{*X}^2} \right) \end{split}$$

Upper bounds on $\bar{K}-K,\,\bar{B}_d-B_d$ and \bar{B}_s-B_s mixings

$$\left| \left[V_L^{d\dagger} \hat{s}^{\dagger} \hat{s} V_L^d \right]^i_{\ \ \, j} \right| \lesssim \frac{(M_*/\text{TeV})}{g_*\sqrt{\text{const}}} \left\{ \begin{array}{c} 10^{-3} \text{ , from } \bar{K}\text{-}K \text{ mixing, i.e., } i = 1, j = 2 \ [1] \\ 1.1 \times 10^{-3} \text{ , from } \bar{B}_d\text{-}B_d \text{ mixing, i.e., } i = 1, j = 3 \ [2] \\ 4 \times 10^{-3} \text{ , from } \bar{B}_s\text{-}B_s \text{ mixing, i.e., } i = 2, j = 3 \ [2] \end{array} \right.$$

[1]: JHEP 03 (2008) 049 (0707.0636), [2]: JHEP 03 (2014) 016 (1308.1851)

 $\Delta F = 2 \ \& \ R_{D^{(*)}}$ bounds

$$1.1 \times 10^{-3} |V_{cd}| \frac{(M_*/\text{TeV})}{g_*\sqrt{\text{const}}} + 4 \times 10^{-3} |V_{cs}| \frac{(M_*/\text{TeV})}{g_*\sqrt{\text{const}}} + |V_{cb}| \gtrsim 0.2 \left(\frac{M_*/\text{TeV}}{g_*}\right)^2$$