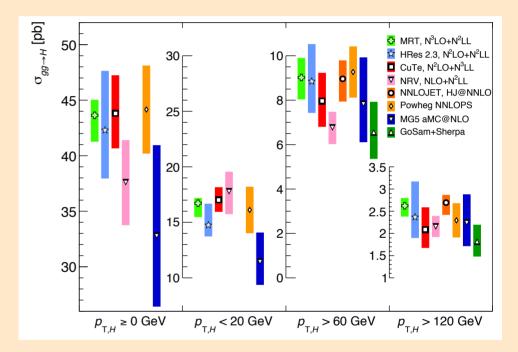
Validation and Benchmarking of EFT tools

Mingshui Chen, IHEP <u>Chris Hays, Oxford University</u> David Marzocca, INFN Trieste Francesco Riva, University of Geneva

WG2 meeting 14 June, 2018


Motivation

Aim to understand and quantify differences between EFT tools

Strategies can be informed by WG1 experience

General strategy:

- Define tool use cases & applicability
- Fix common parameters
- Document benchmark processes and translations

Use cases and tools

Global EFT parameter fit to Higgs + Electroweak + top data

- SMEFTsim (+ expected implementation at NLO in QCD)
- Multi-parameter fit to Higgs + Electroweak data
- SMEFTsim, HEL, BSMC

Characterization of Higgs data

- SMEFTsim, HEL, BSMC, HC

Characterization of classes of Higgs processes - SMEFTsim, HEL, BSMC, HC, HiggsPO, HAWK, VBFNLO, WHizard, HiGlu, HPair, HiggsPair, Hto4l, Prophecy4f, EHDecay, MELA

Translation between bases and tools

- Rosetta (+ expected implementation of all operators)

Other tools?

Standards

SM parameters & scheme

Unless otherwise specified, all the predictions correspond to a Higgs boson mass of 125 GeV, $\sqrt{s} = 13$ TeV, and the choice of SM input parameters and PDFs in Sects. I.1–I.2. We will first list

YR4, 1610.07922

EFT parameters

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

Choose standard field and parameter definitions in each basis

Proposed procedures

1. Choose benchmark processes (B)

- Initially inclusive production & decay processes, extend to STXS & diffXS
- 2. Evaluate parameter dependence of each process for each tool
 - Separate into B_{int}/B_{SM} and B_{BSM}/B_{SM} (linear & quadratic in EFT parameters)
 - Translate tool parameters into standard format if necessary
 - Preferably performed by authors with settings & translations provided to users
- 3. Translate each tool's results into other bases
 - Preferably performed by authors of translation tools
- 4. Investigate differences, iterate, document

Example

Gluon-fusion production:

HEL: $\sigma_{int}/\sigma_{SM} = 8840 \text{ cG} = 42 \text{ c}_g/\Lambda^2 \text{ [LHCHXSWG-INT-2017-001 (Hays, Sanz, Zemaityte)]}$ SMEFTsim: $\sigma_{int}/\sigma_{SM} = 21 \text{ c}_g/\Lambda^2 \text{ [Zemaityte]}$

Looking at the model files I think HEL has a spurious factor of 2 in its ggH vertex

GC_1501 = 4 cG g_s^2 v / m_W^2 , with cG = $m_W^2/g_s^2 c_g/\Lambda^2$ [JHEP 04 (2014) 110]

The operator is $|H|^2 GG = (v+h)^2 GG = 2vhGG + ...$ and the vertex is defined as hGG

Discussion

Feedback?

Volunteers?