

First results from the ISOLDE Solenoidal preliminary Spectrometer

D. K. Sharp
The University of Manchester, UK

ISOLDE Workshop
5th-7th December 2018

- Introduction of solenoid technique for transfer reactions.
- Introduce ISS project.
- First results from IS621 and IS631.

Transfer reactions as a probe of single-particle properties

Transfer reactions are a direct reaction. Single-step transfer of one or more nucleons to or from a target of interest.

Single-nucleon transfer probes single-particle properties of nuclei.

- Ejectile energy > Excitation of residual nucleus.
- Yield -> cross section.
- Angular distributions -> ℓ.

In inverse kinematics Q-value spectrum affected by kinematic compression of measured ejectile energies in lab frame - leading to poor resolution.

Ejectile

"New" Technique for Magnetic Spectrometers: Solenoid

MEASURED QUANTITIES: position z, cyclotron period T_{cyc} and lab particle energy E_p

 $T_{\rm cyc} = \frac{2\pi}{B} \frac{m}{qe}$

Suffers no kinematic compression of the Q-value spectrum

Linear relationship between E_{cm} and E_{lab}

Contribution from position resolution ~15-20 keV

A. Wuosmaa et al. NIMA **580** (2007) 1290

HELIOS@ANL

Early experiments using stable beams of varying mass with intensity similar to strong ISOLDE RIBs $\sim 1e^7$ pps.

Energy resolution of ~75 keV achieved.

Radioactive beams produced in-flight.

Many others – not limited to (d,p)

- ^{12,13}B, ¹⁵C, ¹⁸N(d,p)
- ^{14,15}C(d,³He)
- $^{14,15}C(d,a)$
- ²⁰Ne(a,p)
- $^{10}B(p,p')$

Plan to exploit CARIBU beams and upgraded in-flight facility AIRIS.

B. P. Kay et al, PRC 84 024325 (2011)

D.K. Sharp et al. PRC 87 014312 (2013)

e.g. Protons

from (d,p)

Physics at HIE-ISOLDE with a solenoid

Getting a magnet

Magnet available from Brisbane (UQ) OR66 4T ex-MRI magnet.

Only 10 ever made -> Argonne found three of them!
#2 SOLARIS -> FRIB
#10 ANL HEP
#5 ISS -> ISOLDE

Calicanto Bridge

Getting a magnet

Sarah

ISOLDE Solenoidal Spectrometer

Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests - May 2018

Miniball's (and the SEC's) new neighbour

ISOLDE Solenoidal Spectrometer

Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

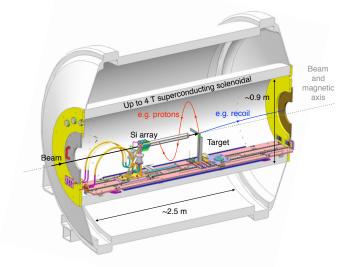
Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests – May/September 2018

Uniformity and field pattern as expected.

ISOLDE Solenoidal Spectrometer


Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests – May/September 2018

Beam profile scans – FWHM<1.5mm Test of ANL array and DAQ - ~110keV FWHM (200ug target) – comparable with simulations.

EXP #1 IS621 - Changing shell structure near Island of Inversion

Ground states and low-lying excitations from intruder configurations have been observed.

Prevalence of intruder orbitals is indicative of **weakening N=20 shell closure**.

In the Ne, Al and Na isotopes there is a **soft transition** to a deformed ground state.

In Mg isotopes this transition is **sharper** with ³¹Mg inside the island and ³⁰Mg outside.

Measurements of the **single-particle properties** moving in to the island of inversion provide important systematic information on the behavior of the relevant orbitals and shell gaps.

In particular the **difference** between the d and s orbitals and fp -shell which define the N=20 shell gap.

$EXP #1 IS621 - {}^{28}Mg(d,p)^{29}Mg$

10⁶ pps 9.473 MeV/u (dE/E = 0.3%) beam – highest HIE-ISOLDE RIB beam <u>energy per nucleon</u>.

Annular detector to monitor target thickness.

ΔE-E recoil detector (annular silicon) used to remove beam contamination.

Zero-degree detector to ascertain degree of contamination.

Target ladder can hold multiple CD₂ targets (~90-150ug/cm²) and apertures.

ISS set at a field of **2.5T** – 2 target-array positions used to cover $10^{\circ} < \theta_{cm} 40^{\circ}$ for states up to ~ 4 MeV.

EXP #1 IS621-28Mg(d,p)29Mg reaction gating

EXP #1 IS621-28Mg(d,p)29Mg reaction gating

EXP #1 IS621-28Mg(d,p)29Mg Bound/unbound comparison

Ability to gate on ²⁹Mg recoil and ²⁸Mg component following neutron emission.

Further optimisation of gates required in order to put limits on potential gamma branches – some sign of 4.32 MeV gamma branch.

EXP #1 IS621- ²⁸Mg(d,p)²⁹Mg Angular distributions + Preliminary results

Angular distributions extracted for 9 states up to 4.32 MeV (2 unbound).

Compared to **DWBA** calculations to make **preliminary** ℓ **assignments** – calculations extrapolated for unbound states.

Comparison to SM calculations using the SDPF-MU interaction with Op-Oh excitations only for the positive-parity states, 1p-1h excitations for the negative-parity states, N=20 shell closure smaller than predicted?

Work still to be done - optimise gates.

Optimise detector calibrations.

Treatment of reaction calculations for unbound states.

Comparison with new SM interaction.

EXP#2 IS631 - ²⁰⁶Hg(d,p)²⁰⁷Hg

N=127 istones below Pb

Below Pb, around N=126 very little is known.

Evolution of single-particle structure not investigated in lead region – requires heavy RIB's which HIE-ISOLDE can provide

Few theoretical studies on single-particle excitations.

s-states in loosely bound systems tend to linger below threshold—this feature seems to dominate the structural changes in light nuclei, and that results in halo structures. Does this characteristic of s-states play a role in loosely bound heavier systems?

Slides courtesy of B Kay

C. R. Hoffman, B. P. Kay, J. P. Schiffer, PRC **89**, 061305(R) (2014), C. R. Hoffman, B. P. Kay, J. P. Schiffer, PRC **94**, 024330 (2016), C. R. Hoffman, and B. P. Kay, Nuclear Physics News International Oct-Dec 2015. X. F. Yang et al., Phys. Rev. Le7. **116**, 182501 (2016)

$EXP#2 IS631 - {}^{206}Hg(d,p){}^{207}Hg set up$

Slides courtesy of B Kay

Experimental info:

- ~5×10⁵ ions per second of ²⁰⁶Hg for ~82 hours
- a 7.4 MeV/u ²⁰⁶Hg beam highest total energy HIE-ISOLDE beam >1.5 GeV.
- Beam purity of >98%
- Measured in singles mode
- Using >30 deuterated polyethylene targets of thickness around 165 μg/ cm² (to deal with target degradation)
- ISS set to a B-field of 2.5 T

The bulk of the $0g_{9/2}$, $2d_{5/2}$, $3s_{1/2}$, $2d_{3/2}$, and $0g_{7/2}$ strength, corresponding to l=4,2,0,2, and 4 transfer – beam energy limited cross section for higher ℓ transfer.

Outstanding tasks include: refining the analysis of the background and of the angular distributions, then interpreting the findings. *All data presented are preliminary and subject to change*

10 30 10 30 10 30 10 30 50 $\theta_{\rm cm}$ (deg)	10 (a) (b) (c) (d) (d) 4 (e) (f) (g) (g) 4					

E (keV)	ℓ	j^{π}	$n\ell s$	S
0	4	$9/2^{+}$	$1g_{9/2}$	0.82(5)
1197(5)	2	$5/2^{+}$	$2d_{5/2}$	0.47(6)
1600(45)	2	$5/2^{+}$	$2d_{5/2}$	0.13(1)
1810(20)	2	$5/2^{+}$	$2d_{5/2}$	0.42(3)
1960(30)	0	$1/2^{+}$	$3s_{1/2}$	1.00(13)
2335(6)	2	$3/2^{+}$	$2d_{3/2}$	1.00(7)
2530(20)	4	7/2+	$1g_{7/2}$	0.62(6)

Conclusions and future developments

First two experiments with ISS have both been successful.

Also for HIE-ISOLDE operating at new extremes of energy.

Operation of ISS in **two different mass regions** demonstrated.

New array (alpha tests to start in new year – commissioning during LS2).

New fast counting recoil detector – ready for after LS2.

SpecMat – time projection chamber with gamma ray detection. Full system characterized March 2019 – move to ISOLDE by end of 2019.

Recoil spectrometer tests in the solenoid field.

ISS collaboration

Università degli Studi di Padova

UiO: University of Oslo

SpecMat

