

⁵⁹Cu(p,α) cross section for the heavy element nucleosynthesis in core collapse supernovae

Collaboration

R. Garg, C. Lederer-Woods, T. Davinson, M. Dietz, D. Kahl, S. J. Lonsdale, A. Murphy, P. J. Woods

- University of Edinburgh, UK

M. Barbagallo

- CERN, Switzerland

Origin of heavy proton-rich nuclei

- The p-nuclei are thought to be produced via pprocesses; proton-capture and photo disintegration of heavy nuclei.
- However, the observed abundance of some lighter p-nuclei (92,94Mo and 96,98Ru) not reproduced in most stellar models with these processes.

Origin of heavy proton-rich nuclei

- The p-nuclei are thought to be produced via pprocesses; proton-capture and photo disintegration of heavy nuclei.
- However, the observed abundance of some lighter p-nuclei (92,94Mo and 96,98Ru) not reproduced in most stellar models with these processes.
- Possible production of these p-nuclei in the vpprocess in core collapse supernovae (*Fröhlich et al*, *PRL* 96, 2006)

vp-process:

- The matter becomes proton-rich in core-collapse supernova by neutrino capture on free neutrons
- In this proton-rich ejecta, elements up to ⁶⁴Ge as proton captures probability drops at this point
- Antineutrino capture on protons can briefly cause a neutron density of 10¹⁴ -10¹⁵ cm⁻³
- These neutron get captured on ⁶⁴Ge and unblock the matter flow to heavier element synthesis

Origin of heavy proton-rich nuclei

- NiCu cycle has been identified as the key end point at high temperatures (~3 GK) (A. Arcones et al, ApJ 750, 2012)
- Competition between (p,α) and (p,γ) on 59 Cu sets temperature where heavy element formation starts
- Higher cross-over temperature = more efficient vp-process

X-ray Bursts (light curve)

• ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016)

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1
2	59 Cu(p, γ) 60 Zn	D	12.1	1
3	$^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$	D	7.9	1
A	$^{30}\text{S}(\alpha, p)^{33}\text{Cl}$	U	7.8	1
Cu Up	26 Si $(\alpha, p)^{29}$ P	U	5.3	1
Cl Up]	61 Ga(p, γ) 62 Ge	D	5.0	1
P Up] ³ Ga Up]	23 Al(p, γ) 24 Si	U	4.8	1
⁵ Al Dn]	$^{27}P(p, \gamma)^{28}S$	D	4.4	1
Cl Up	63 Ga(p, γ) 64 Ge	D	3.8	1
Na Dn	60 Zn(α , p) 63 Ga	U	3.6	1

Single-zone model results

Rank

X-ray Bursts (light curve)

• ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016)

	Reaction	Type ^a	Sensitivity ^b	Category
	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1
	59 Cu(p, γ) 60 Zn	D	12.1	1
	$^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$	D	7.9	1
	$^{30}\text{S}(\alpha, p)^{33}\text{Cl}$	U	7.8	1
-	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	5.3	1
	61 Ga(p, γ) 62 Ge	D	5.0	1
-	23 Al(p, γ) 24 Si	U	4.8	1
-	$^{27}P(p, \gamma)^{28}S$	D	4.4	1
	63 Ga(p, γ) 64 Ge	D	3.8	1
-	60 Zn(α , p) 63 Ga	U	3.6	1

Single-zone model results

X-ray Bursts (light curve)

• ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016)

Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$	D	16	1
2	56 Ni(α , p) 59 Cu	U	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	61 Ga(p, γ) 62 Ge	D	3.7	1
5	22 Mg(α , p) 25 Al	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	18 Ne(α , p) 21 Na	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, α) 16 O	U	1.3	2

Multi-zone model results

X-ray Bursts (light curve)

• ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016)

Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$	D	16	1
2	56 Ni(α , p) 59 Cu	U	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	61 Ga(p, γ) 62 Ge	D	3.7	1
5	22 Mg(α , p) 25 Al	D	2.3	1
6	$^{14}{\rm O}(\alpha,{\rm p})^{17}{\rm F}$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	18 Ne(α , p) 21 Na	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, α) 16 O	U	1.3	2

Multi-zone model results

X-ray Bursts (ash composition)

Multi-zone model results

Table 5

• Inverse of ⁵⁹Cu(p,α) reaction affects the composition of the burst ashes (R. Cyburt et al, ApJ 830, 2016)

Count	Reaction	Max. Ratio ^a	Affected Mass Numbers with Mass Fraction $>10^{-4}$		
			max	>×10 change	$\times 2 < \text{change}$ $< \times 10$
1	8 Be(α , γ) 12 C	3	98		30, 93–99
2	$^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$	2	28		28
3	$^{14}O(\alpha, p)^{17}F$	4	29		29
:	:	:	:		: :
23	54 Fe(p, γ) 55 Co	6	54		54
24	⁵⁶ Ni(α, p) ⁵⁹ Cu	5	29		12, 29–30, 56, 75,
					78–79, 82
25	59 Cu(p, γ) 60 Zn	200	59	59	12, 29–30, 75, 78–79

Experimental Measurement

Gamow Window: The relevant energy range for any stellar environment.

The reaction probability (cross-section, $\sigma(E)$) falls rapidly at lower energies!!

Challenge: The direct measurements in this energy range are not easy

 59 Cu(p, α) 56 Ni reaction studied in inverse kinematics

⁵⁹Cu(p,α)⁵⁶Ni reaction studied in inverse kinematics

Radioactive ⁵⁹Cu beam delivered by **HIE-ISOLDE** at CERN

- Intensity ~2 epA (5.5x10⁵ pps)
- High purity
- 5 different energies between 3.6 5.0 MeV/u

 The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh)

 The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh)

CH, foil

70 mm outer diameter

48 annular rings in front

16 radial sectors in back

- The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh)
- ΔE -E telescope placed at 30 mm from target to cover large lab-angles for α -particles detection.

- The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh)
- ΔE -E telescope placed at 30 mm from target to cover large lab-angles for α -particles detection.
- ⁵⁶Ni recoils detector was placed at 400 mm to cover forward angles.

Extra stuff: ISOLDE's 50 year anniversary video

<u>Coincidence detection of reaction products</u> (α-particle and ⁵⁶Ni)

- α -particle detected using the ΔE -E telescope
- The α -particle identification done using the E vs ΔE plot

<u>Coincidence detection of reaction products</u> (α-particle and ⁵⁶Ni)

- α -particle detected using the ΔE -E telescope
- The α -particle identification done using the E vs ΔE plot

Coincidence detection of reaction products (α-particle and ⁵⁶Ni)

- α -particle detected using the ΔE -E telescope
- The $\alpha\text{-particle}$ identification done using the E vs ΔE plot

- \bullet Identified α -particle's energy is plotted against HI energies
- The background events are cut out by gating data on momentum

Coincidence detection of reaction products (α-particle and ⁵⁶Ni)

- α -particle detected using the ΔE -E telescope
- The $\alpha\text{-particle}$ identification done using the E vs ΔE plot

- \bullet Identified α -particle's energy is plotted against HI energies
- The background events are cut out by gating data on momentum

Coincidence detection of reaction products (α-particle and ⁵⁶Ni)

- α -particle detected using the ΔE -E telescope
- The $\alpha\text{-particle}$ identification done using the E vs ΔE plot

- \bullet Identified α -particle's energy is plotted against HI energies
- The background events are cut out by gating data on momentum

Beam intensity measurement

• Faraday cup reading at the end of the detector setup

Beam intensity measurement

- Faraday cup reading at the end of the detector setup
- Rutherford scattering of 59Cu on 12C in the target foil

Beam intensity measurement

- Faraday cup reading at the end of the detector setup
- Rutherford scattering of ⁵⁹Cu on ¹²C in the target foil

R147, E_beam = 5.0 MeV/u

Calculated beam current: 7.7 pA FC reading: 2.1 pA

Beam intensity measurement

- Faraday cup reading at the end of the detector setup
- Rutherford scattering of ⁵⁹Cu on ¹²C in the target foil

R77, E_beam = 4.7 MeV/u

Calculated beam current: 9.0 pA

FC reading: 1.85 pA

R147, E_beam = 5.0 MeV/u

Calculated beam current: 7.7 pA FC reading: 2.1 pA

Summary I: The ⁵⁹Cu(p,α)⁵⁶Ni measurement

- ⁵⁹Cu(p,α)⁵⁶Ni reaction cross section has implications on:
 - P-nuclei production in core collapse supernovae
 - X-ray burst light curve
 - X-ray burst ash compositions
- No experimental data available on direct measurement
- First direct measurement performed by University of Edinburgh group at HIE-ISOLDE, CERN
- Data analysis 'work in progress'

Thank you for your attention!