⁵⁹Cu(p,α) cross section for the heavy element nucleosynthesis in core collapse supernovae #### **Collaboration** R. Garg, C. Lederer-Woods, T. Davinson, M. Dietz, D. Kahl, S. J. Lonsdale, A. Murphy, P. J. Woods - University of Edinburgh, UK M. Barbagallo - CERN, Switzerland #### Origin of heavy proton-rich nuclei - The p-nuclei are thought to be produced via pprocesses; proton-capture and photo disintegration of heavy nuclei. - However, the observed abundance of some lighter p-nuclei (92,94Mo and 96,98Ru) not reproduced in most stellar models with these processes. #### Origin of heavy proton-rich nuclei - The p-nuclei are thought to be produced via pprocesses; proton-capture and photo disintegration of heavy nuclei. - However, the observed abundance of some lighter p-nuclei (92,94Mo and 96,98Ru) not reproduced in most stellar models with these processes. - Possible production of these p-nuclei in the vpprocess in core collapse supernovae (*Fröhlich et al*, *PRL* 96, 2006) #### vp-process: - The matter becomes proton-rich in core-collapse supernova by neutrino capture on free neutrons - In this proton-rich ejecta, elements up to ⁶⁴Ge as proton captures probability drops at this point - Antineutrino capture on protons can briefly cause a neutron density of 10¹⁴ -10¹⁵ cm⁻³ - These neutron get captured on ⁶⁴Ge and unblock the matter flow to heavier element synthesis #### Origin of heavy proton-rich nuclei - NiCu cycle has been identified as the key end point at high temperatures (~3 GK) (A. Arcones et al, ApJ 750, 2012) - Competition between (p,α) and (p,γ) on 59 Cu sets temperature where heavy element formation starts - Higher cross-over temperature = more efficient vp-process #### X-ray Bursts (light curve) • ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016) | Rank | Reaction | Type ^a | Sensitivity ^b | Category | |--------------------------------|---|-------------------|--------------------------|----------| | 1 | ⁵⁶ Ni(α, p) ⁵⁹ Cu | U | 12.5 | 1 | | 2 | 59 Cu(p, γ) 60 Zn | D | 12.1 | 1 | | 3 | $^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$ | D | 7.9 | 1 | | A | $^{30}\text{S}(\alpha, p)^{33}\text{Cl}$ | U | 7.8 | 1 | | Cu Up | 26 Si $(\alpha, p)^{29}$ P | U | 5.3 | 1 | | Cl Up] | 61 Ga(p, γ) 62 Ge | D | 5.0 | 1 | | P Up]
³ Ga Up] | 23 Al(p, γ) 24 Si | U | 4.8 | 1 | | ⁵ Al Dn] | $^{27}P(p, \gamma)^{28}S$ | D | 4.4 | 1 | | Cl Up | 63 Ga(p, γ) 64 Ge | D | 3.8 | 1 | | Na Dn | 60 Zn(α , p) 63 Ga | U | 3.6 | 1 | Single-zone model results Rank #### X-ray Bursts (light curve) • ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016) | | Reaction | Type ^a | Sensitivity ^b | Category | |---|--|-------------------|--------------------------|----------| | | ⁵⁶ Ni(α, p) ⁵⁹ Cu | U | 12.5 | 1 | | | 59 Cu(p, γ) 60 Zn | D | 12.1 | 1 | | | $^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$ | D | 7.9 | 1 | | | $^{30}\text{S}(\alpha, p)^{33}\text{Cl}$ | U | 7.8 | 1 | | - | $^{26}\text{Si}(\alpha, p)^{29}\text{P}$ | U | 5.3 | 1 | | | 61 Ga(p, γ) 62 Ge | D | 5.0 | 1 | | - | 23 Al(p, γ) 24 Si | U | 4.8 | 1 | | - | $^{27}P(p, \gamma)^{28}S$ | D | 4.4 | 1 | | | 63 Ga(p, γ) 64 Ge | D | 3.8 | 1 | | - | 60 Zn(α , p) 63 Ga | U | 3.6 | 1 | Single-zone model results #### X-ray Bursts (light curve) • ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016) # Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model | Rank | Reaction | Type ^a | Sensitivity ^b | Category | |------|---|-------------------|--------------------------|----------| | 1 | $^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$ | D | 16 | 1 | | 2 | 56 Ni(α , p) 59 Cu | U | 6.4 | 1 | | 3 | 59 Cu(p, γ) 60 Zn | D | 5.1 | 1 | | 4 | 61 Ga(p, γ) 62 Ge | D | 3.7 | 1 | | 5 | 22 Mg(α , p) 25 Al | D | 2.3 | 1 | | 6 | $^{14}O(\alpha, p)^{17}F$ | D | 5.8 | 1 | | 7 | 23 Al(p, γ) 24 Si | D | 4.6 | 1 | | 8 | 18 Ne(α , p) 21 Na | U | 1.8 | 1 | | 9 | 63 Ga(p, γ) 64 Ge | D | 1.4 | 2 | | 10 | 19 F(p, α) 16 O | U | 1.3 | 2 | Multi-zone model results #### X-ray Bursts (light curve) • ⁵⁹Cu(p,α) reaction is of key importance" for X-ray light curve (R. Cyburt et al, ApJ 830, 2016) # Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model | Rank | Reaction | Type ^a | Sensitivity ^b | Category | |------|---|-------------------|--------------------------|----------| | 1 | $^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$ | D | 16 | 1 | | 2 | 56 Ni(α , p) 59 Cu | U | 6.4 | 1 | | 3 | 59 Cu(p, γ) 60 Zn | D | 5.1 | 1 | | 4 | 61 Ga(p, γ) 62 Ge | D | 3.7 | 1 | | 5 | 22 Mg(α , p) 25 Al | D | 2.3 | 1 | | 6 | $^{14}{\rm O}(\alpha,{\rm p})^{17}{\rm F}$ | D | 5.8 | 1 | | 7 | 23 Al(p, γ) 24 Si | D | 4.6 | 1 | | 8 | 18 Ne(α , p) 21 Na | U | 1.8 | 1 | | 9 | 63 Ga(p, γ) 64 Ge | D | 1.4 | 2 | | 10 | 19 F(p, α) 16 O | U | 1.3 | 2 | Multi-zone model results #### X-ray Bursts (ash composition) Multi-zone model results Table 5 • Inverse of ⁵⁹Cu(p,α) reaction affects the composition of the burst ashes (R. Cyburt et al, ApJ 830, 2016) | Count | Reaction | Max.
Ratio ^a | Affected Mass Numbers with Mass Fraction $>10^{-4}$ | | | |-------|--|----------------------------|---|----------------|---| | | | | max | >×10
change | $\times 2 < \text{change}$
$< \times 10$ | | 1 | 8 Be(α , γ) 12 C | 3 | 98 | | 30, 93–99 | | 2 | $^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$ | 2 | 28 | | 28 | | 3 | $^{14}O(\alpha, p)^{17}F$ | 4 | 29 | | 29 | | : | : | : | : | | :
: | | 23 | 54 Fe(p, γ) 55 Co | 6 | 54 | | 54 | | 24 | ⁵⁶ Ni(α, p) ⁵⁹ Cu | 5 | 29 | | 12, 29–30, 56, 75, | | | | | | | 78–79, 82 | | 25 | 59 Cu(p, γ) 60 Zn | 200 | 59 | 59 | 12, 29–30,
75, 78–79 | #### **Experimental Measurement** Gamow Window: The relevant energy range for any stellar environment. The reaction probability (cross-section, $\sigma(E)$) falls rapidly at lower energies!! Challenge: The direct measurements in this energy range are not easy 59 Cu(p, α) 56 Ni reaction studied in inverse kinematics ⁵⁹Cu(p,α)⁵⁶Ni reaction studied in inverse kinematics Radioactive ⁵⁹Cu beam delivered by **HIE-ISOLDE** at CERN - Intensity ~2 epA (5.5x10⁵ pps) - High purity - 5 different energies between 3.6 5.0 MeV/u The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh) The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh) CH, foil 70 mm outer diameter 48 annular rings in front 16 radial sectors in back - The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh) - ΔE -E telescope placed at 30 mm from target to cover large lab-angles for α -particles detection. - The reaction products were detected using S2-type silicon detector array (purpose-built by University of Edinburgh) - ΔE -E telescope placed at 30 mm from target to cover large lab-angles for α -particles detection. - ⁵⁶Ni recoils detector was placed at 400 mm to cover forward angles. **Extra stuff:** ISOLDE's 50 year anniversary video # <u>Coincidence detection of reaction products</u> (α-particle and ⁵⁶Ni) - α -particle detected using the ΔE -E telescope - The α -particle identification done using the E vs ΔE plot # <u>Coincidence detection of reaction products</u> (α-particle and ⁵⁶Ni) - α -particle detected using the ΔE -E telescope - The α -particle identification done using the E vs ΔE plot # Coincidence detection of reaction products (α-particle and ⁵⁶Ni) - α -particle detected using the ΔE -E telescope - The $\alpha\text{-particle}$ identification done using the E vs ΔE plot - \bullet Identified α -particle's energy is plotted against HI energies - The background events are cut out by gating data on momentum # Coincidence detection of reaction products (α-particle and ⁵⁶Ni) - α -particle detected using the ΔE -E telescope - The $\alpha\text{-particle}$ identification done using the E vs ΔE plot - \bullet Identified α -particle's energy is plotted against HI energies - The background events are cut out by gating data on momentum # Coincidence detection of reaction products (α-particle and ⁵⁶Ni) - α -particle detected using the ΔE -E telescope - The $\alpha\text{-particle}$ identification done using the E vs ΔE plot - \bullet Identified α -particle's energy is plotted against HI energies - The background events are cut out by gating data on momentum #### Beam intensity measurement • Faraday cup reading at the end of the detector setup #### Beam intensity measurement - Faraday cup reading at the end of the detector setup - Rutherford scattering of 59Cu on 12C in the target foil #### **Beam intensity measurement** - Faraday cup reading at the end of the detector setup - Rutherford scattering of ⁵⁹Cu on ¹²C in the target foil R147, E_beam = 5.0 MeV/u Calculated beam current: 7.7 pA FC reading: 2.1 pA #### **Beam intensity measurement** - Faraday cup reading at the end of the detector setup - Rutherford scattering of ⁵⁹Cu on ¹²C in the target foil R77, E_beam = 4.7 MeV/u Calculated beam current: 9.0 pA FC reading: 1.85 pA R147, E_beam = 5.0 MeV/u Calculated beam current: 7.7 pA FC reading: 2.1 pA # Summary I: The ⁵⁹Cu(p,α)⁵⁶Ni measurement - ⁵⁹Cu(p,α)⁵⁶Ni reaction cross section has implications on: - P-nuclei production in core collapse supernovae - X-ray burst light curve - X-ray burst ash compositions - No experimental data available on direct measurement - First direct measurement performed by University of Edinburgh group at HIE-ISOLDE, CERN - Data analysis 'work in progress' # Thank you for your attention!