SPES infrastructure - layout # SPES project: the phases **ISOL RIBs+ Post-Acc** Nuclear Medicine Nuclear Medicine Cyclotron ISOL RIBs+ Post-Acc. Nuclear Applications # SPES-γ Radioisotopes for Nuclear Medicine - Cross Section measurements through target activation - High power targets tests - Radio-isotope/radio-pharmaceutical Production test facility (99mTc, ⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ...) - At present installed BL1 → ISOL1 - Partial BL2 → Faraday Cup #### **LARAMED** - High power beam line BL3b → RILAB-RI#3(up to 500 μA) → all elements at LNL → installation feb/march 2019 - Low power beam line BL3c → RILAB-A9c (up to 100 nA) for cross section measurements → tender beginning 2019 #### **BEST** BL2 → ISOL2 - ready to be installed within 2019 Production facility operated by INFN and private partner for research and production of radioisotopes (⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ⁶⁸Ge, ...) # SPES- γ Radioisotopes for Nuclear Medicine #### **LARAMED** # Facility under construction Standard method - Compounds for Radiochemistry Installed - Plants installed - Completion of instrumentation installation foreseen fall 2019 - Target station for cross section measurement – ready to be installed - Target Station # Use of the cyclotron proton beam for radioisotope production Production laboratory in Joint Venture with a private company (signed): Selected isotopes of medical interest Sr-82/Rb-82 generator ARRONAX (Nantes) – SPES collaboration: Isotopes and high-Power target developments Use of ISOL technique for Direct isotope on-line separation: very high specific activity (10⁴⁻⁵ than standard) High specific activity radio PHARMaceuticals production with ISOL technique #### HUGE SPECIFIC ACTIVITY **ISOL** technique leads to the production of radioactive ion beams (Isolpharm is a international INFN patent) # SPES-γ Radioisotopes for Nuclear Medicine Accelerator based neutron sources have many applications: Nuclear astrophysics, Characterization of nuclear waste, BNCT... The cyclotron can also be used as a neutron source Project at design study level. Partially funded under Ministry of Research and University (collaboration with TIFPA) \rightarrow SPARE (Space Radiation Shielding) Neutron production by interaction of protons with heavy and light targets - Fast neutron production: $\sim 6.10^{14} \text{ s}^{-1}$ - \square Neutron flux Φ_n @ 2.5 m: 5×10^8 n cm⁻² s⁻¹ - Continuum spectra: SEE: Single Event Effect study - Quasi mono-energetic spectra: # The SPES ISOL RIB project at LNL # Beyond Isotopes discovery – challenges Nuclear Structure & Reaction Dynamics: Long Standing Questions - Powering stellar explosions, - neutron star crust etc 50 82 82 neutrons #### Which are the limits for existence of nuclei? - Where are the proton and neutron **drip lines** situated? - Where does the nuclear chart end? #### How does the nuclear force depend on varying proton-to-neutron ratios? - What is the isospin dependence of the spin-orbit force? - Which is the shell evolution moving far from stability (magic numbers, proton-neutron interaction, shell gap creation and disappearence)? #### How to explain collective phenomena from individual motion? - What are the phases (NEOS), relevant degrees of freedom, and symmetries of the nuclear many-body system? - How are complex nuclei built from their basic constituents? - What is the effective nucleon-nucleon interaction? - How does QCD constrain its parameters? - Which are the nuclei relevant for astrophysical processes and what are their properties? - What is the origin of the heavy elements? 126 # Detector's portfolio: resident setups I #### **GALILEO** #### Phase 1: 25 HPGe + 25 BGO + ancillaries 240 ch digital electronics (AGATA) #### Phase 2: 30 HPGe + 30 BGO + 10 GTC @ backward angles Efficiency ~ 7.5%, PT ~ 60% Courtesy of D. Mengoni #### **ANCILLARIES** **Light charged particle EUCLIDES, SPIDER; TRACE Neutron detectors** N-WALL, NEDA Lifetime measurements) PLUNGER (from Cologne) **Recoil Detector** RDF (from Kracow) Fast timing high energy γ -detectors LaBr3 scintillators #### **Set-up for Coulomb Excitation measurements** **COULEX** is the most powerful and direct experimental method to study nuclear collectivity and shapes: diagonal matrix elements give information on the **shape** #### **SPIDER: Silicon Ple DEtectoR:** Available @LNL since 2016 - 8 independent sectors, 8 strips + guard ring - FWHM ~21 keV for α-particles @ ~5.5 MeV - Modularity: with GALILEO Cone configuration (7sectors) at backward angles ⇒ $\Delta\Theta = 37.4^{\circ}, \Omega/4\pi = 17.3\%$ 7 LoI about Coulex presented for SPES. # Detector's portfolio: resident setups II Work of P. Gagnant #### **PRISMA** Large acceptance magnetic spectrometer $\Omega \approx 80 \text{ msr}$; $B\rho_{max} = 1.2 \text{ Tm}$ Δ A/A \sim 1/200 Energy acceptance ~ ±20% #### **ATS:** an ACTIVE TARGET for SPES 1. ACTAR TPC 2. SpecMAT #### **GARFIELD** 4π array for Light Charged particles and fragments 1) 192 MSGC - CsI(T) telescopes (30°-150°) 2-Rco IC-Si-CsI (5°-18°) # Detector's portfolio: "traveling" setups ### AGATA: innovative γ -rays tracking array) PARIS (High Energy γ-ray Detector Array) PARIS with AGATA FAZIA: LCP & fragments detection **NEDA** (NEutron Detector Array) # 1⁺ lines: physics with non post-accelerated beams Join the LNL USER Committee: http://www.lnl.infn.it/index.php/it/usergrouphome **Technical Advisory Committee** of SPES strongly recommended the idea of having installations for **physics** with non reaccelerated beams A number of LOIs already presented to **2nd SPES International Workshop** - Could exploit and help characterize first day beams - Help characterization of beam contaminants - → useful for post-acceleration - Gives access to complementary info to in-beam and reaction studies #### **ACTIONS:** - formation of a Working Group (convener M. Cinausero) to define location and technical needs - SPES 1-day workshop held in Milano (20-21 April 2015): large number of participants #### **OUTCOME:** - 3 possible experimental areas are planned, 25 m² for each measuring point - · Definition of beam line elements and beam monitoring - Definition of the location of users control rooms #### 3 possible installations: - 1- beta-decay Tape Station - 2- Installation for Laser Spectroscopy - 3- multi-purpose for external user equipment ## Detector's portfolio: "low energy" setups #### **LNL** β -decay Tape Station \rightarrow synergy with RIB characterization #### Courtesy of G. Benzoni & T. Marchi #### **GEANT4** simulations: spectrum coming from 10^7 events of the decay 33 Si \rightarrow 33 P β efficiency ~ 50% γ efficiency at 1 MeV ~ 9.9%. P/T reaches 50% (single gamma of 1 MeV) Veto detector in front of HPGe to reduce bg from e- interacting in crystal #### Experimental requirements for a β -TS at an ISOL facility: - Very low energy incoming beam (40-60 keV) → no signal coming from implanted nucleus → PASSIVE IMPLANTATION ON MYLAR FOYL - Possible contaminations (egs isobaric contaminations and/or longliving species produced in the decay chain) → Need for a fresh implantation point for each single Measurement → MOVING SYSTEM # Exotic nuclei: β -decay key features - Region in chart of nuclides difficult to access - Increasing Q_β values (up to 15 MeV) - Lowering of S_n - Large range of half-lives ~ 10ms -100 s - Possible competing modes $(\alpha \text{ decay, cluster decay, delayed fission})$ #### 1⁺ beam program @SPES PDR populated through β -decay studies in very neutron rich nuclei - The large Q_{β} -value window (>12 MeV) allows population at least the PDR. - The β decay could populate states which are the PDR on the IAS(R) of the mother nucleus #### Proof of principle in a recently published paper PRL 116, 132501 (2016) PHYSICAL REVIEW LETTERS week ending 1 APRIL 2016 #### Investigating the Pygmy Dipole Resonance Using β Decay M. Scheck, ^{1,2,*} S. Mishev, ^{3,4} V. Yu. Ponomarev, ⁵ R. Chapman, ^{1,2} L. P. Gaffney, ^{1,2} E. T. Gregor, ^{1,2} N. Pietralla, ⁵ P. Spagnoletti, ^{1,2} D. Savran, ⁶ and G. S. Simpson ^{1,2} | Mother | J^{π} | Daughter | $S_n[keV]$ | $Q_{\beta} [\text{keV}]$ | I [pps] $@5\mu$ A | I [pps] @200μA | |---------------------|------------------|---------------------|------------|--------------------------|----------------------|-----------------------| | ⁸⁴ Ga | (0^{-}) | $^{84}\mathrm{Ge}$ | 5243 | 12900 | 1.01×10^{3} | 4.02×10^4 | | $^{86}{ m Br}$ | (1^{-}) | $^{86}{ m Kr}$ | 9857 | 7626 | 1.93×10^{7} | 7.73×10^{8} | | $^{96}\mathrm{Y}$ | 0- | $^{96}{ m Zr}$ | 7856 | 7096 | 1.12×10^7 | 4.47×10^{8} | | ^{98}Y | (0^{-}) | $^{98}{ m Zr}$ | 6415 | 8824 | 5.30×10^5 | 2.12×10^7 | | $^{130}\mathrm{In}$ | 1 ⁽⁻⁾ | $^{136}\mathrm{Sn}$ | 7596 | 10249 | 1.93×10^4 | 7.72×10^{5} | | 136I | (1^{-}) | $^{136}\mathrm{Xe}$ | 8084 | 6930 | 2.6×10^{8} | $1.04 \times 10^{1}0$ | | $^{140}\mathrm{Cs}$ | 1- | $^{140}\mathrm{Ba}$ | 6428 | 6220 | 8.53×10^{8} | 3.4×10^{10} | | $^{142}\mathrm{Cs}$ | 0- | $^{142}\mathrm{Ba}$ | 6181 | 7325 | 3.35×10^{7} | 1.34×10^9 | | $^{144}\mathrm{Cs}$ | 1(-) | $^{144}\mathrm{Ba}$ | 5901 | 8500 | 4.35×10^{6} | 1.74×10^{8} | | $^{146}\mathrm{Cs}$ | 1- | $^{146}\mathrm{Ba}$ | 5495 | 9370 | 1.12×10^5 | 4.46×10^{6} | | | | | | | | | A. Gottardo et al. – PLB 772 (2017) 779 Example: 134 In \rightarrow 134 Sn (Q_{β} = 14.7 MeV) $_{Vf_{7/2}} \rightarrow \pi g_{9/2}$ β decay: $v2f_{7/2}$ -> $\pi 2f_{7/2}$, $\pi 2f_{5/2}$; A New Spectrometer for Internal Conversion Electrons @ SPES 1+ (INFN Firenze, INFN Camerino, INFN Milano, LNL) #### **Electric Monopole Transitions (E0)** - Used for instance to study breathing modes (nuclear compressibility), a-clustering and shape coexistence - Shape coexistence & E0 transitions, a simplified picture: Measurement of $\rho^2(E0)$ ($\rho^2(E0) \sim |<0^+_1||E0||0^+_2>|^2$) \Longrightarrow Shape of excited states and mixing between them #### **Continuous β-decay background:** it can be acquired as unwanted coincidences with γ - rays or conversion electrons in the $\beta\text{-}detector$ #### ► y-Compton background: γ-rays can be directly detected in the Si(Li) (only Compton scattering) and indirectly if they are scattered in the materials in the chamber #### ► e⁻ - backscattering: enhanced at high entrance angles (thus higher with a detector just in front of the activity) #### **Magnetic Transport System** - Central absorber to shield from γ-rays - Magnetic lenses, composed by permanent magnets, to re-focalize the electrons #### Courtesy of G. Benzoni & A. Nannini #### "On closed shells in nuclei" #### **Courtesy of J.J. Valiente** Mayer et al., PR75, 1969 (1949) & Jensen et al., PR75 1766 (1949) #### "On closed shells in nuclei" - Study of the low-lying properties of isotopes near by ⁷⁸Ni and beyond N=50 with the SPES beams. - Shell evolution in the region NN and NNN interactions, rigidity of the gaps when going towards ⁷⁸Ni - Changes due to 3N forces are amplified in neutron-rich nuclei and will play a crucial role for matter at the extremes. - Experimentally: Use of Coulomb excitation, (d,p) and (t,α) reactions to study the region - Instrumentation: Sensitive detection systems to be used like: AGATA, GALILEO, TRACE, DANTE, SPIDER - There is no a universal technique to measure the physical properties along an isotopic chain - Concerns: beam purity > 20%, intensity 10⁴-10⁵, energy 10MeV/u - Coulomb excitation neutron-rich ^{86,88}Se and ⁸⁴Ge Evolution of deformation quasi-SU(3). - Coulomb excitation ^{75,77}Cu, population of collective states Infer deformation on the Ni isotopes. - (d,p) 81 Ga, 84 Se, 82 Ge, 80 Zn single particle orbital beyond N=50 d_{5/2}, s_{1/2}, d_{3/2}, g_{7/2} and h_{11/2}. Gap stability. Monopole evolution. - (t, α) to selectively populate single proton states in odd-A ^{73,75,77}Cu isotopes- $p_{3/2}$, $f_{5/2}$ and $f_{7/2}$. Proton removal from the GS of Zn. **Courtesy of J.J. Valiente** ⁷³Cu: 1,8 10⁵ - ⁷⁵Cu: 2,8 10⁴ - ⁷⁷Cu: 1,6 10³ 74 Zn: 7,0 10⁵ – 76 Zn: 2,4 10⁵ – 78 Zn: 2,0 10⁴ – ⁸⁰Zn: 1,0 10³ ⁸¹Ga: 2.2 10⁵ 82Ge: 2,3 105 - 84Ge: 1,3 104 84Se: 2,9 10⁶ - 86Se: 1,3 10⁵ - 88Se: 2,7 10³ # Transfer studies in neutron-deficient nuclei with the neutron detector **NEDA** **Flexible array** – variability of focal positions (experiment dependent) **Various physics campaigns** depending on the configuration **Neutron multiplicity filter.** **Pulse shape discrimination** – online trigger selectivity **Off-line implementation** of traditional algorithms and/or Neural Networks **Angular resolution**: $\theta(0.5 \text{ m}) = \pm 7^{\circ} - \theta(1 \text{ m}) = \pm 4^{\circ}$ **Timing better than 1 ns**. Same performance digital/analog. **Energy resolution** $\Delta E/E$: NEDA 1m – 40%, NEDA 7m – 5% - Possible proposals with NEDA, AGATA/GALILEO and TRACE-GASPARD to perform with light SPES beams from 4 to 10 MeV/u: - Transfer reaction, such as (³He,n), (d,n), etc. - Fusion evaporation reactions - Lifetime measurements → target development 3He, d. - Light neutron-deficent SPES beams → required some developments. # SPES core: the cyclotron #### **BEST B70** - H- - •35-70 MeV - •0.750 mA - 2 exits | Main Parameters | | | | | | |----------------------------|---|--|--|--|--| | Accelerator
Type | Cyclotron AVF 4 sectors | | | | | | Particle | Protons (H ⁻ accelerated) | | | | | | Energy | Variable within 30-70 MeV | | | | | | Max Current
Accelerated | 750 μA (52 kW max beam power) | | | | | | Available
Beams | 2 beams at the same energy
(upgrade to different energies) | | | | | | Max Magnetic
Field | 1.6 Tesla | | | | | | RF frequency | 56 MHz, 4 th harmonic mode | | | | | | Ion Source | Multicusp H ⁻ I=15 mA, Axial
Injection | | | | | | Dimensions | Φ=4.5 m, h=1.5 m | | | | | | Weight | 150 tons | | | | | SAT and commissioning completed (2017) Training of LNL personnel during commissioning completed (December 2017) Operation (March 2018) # SPES core: the cyclotron - May $30^{th} 2016 \rightarrow dual extraction 70 MeV beam 3 µA$ - Sept 9th 2016 → acceleration 70 MeV beam 500 μA - Oct Nov 2016 → preliminary endurance test 250 μA, 40 MeV - End Nov 2016 → source HV transformer broke before completing Site Acceptance Test - June July 2017 → endurance test completed - September 2017 → cyclotron accepted - October December 2017 → LNL personnel operation training - February- March 2018 → LNL cyclotron operation #### High power Beam Dump 50kW Up to **500 μA** current and **70 MeV** energy proton beam (**35 kW**) delivered to the high power Beam Dump Less than 1% beam loss Very good Cyclotron vacuum performance (8x10⁻⁸ mbar with beam ON) # SPES core: the RIB production system #### **Courtesy of Mattia Manzolaro** #### **RIB bunker** # Gas recovery system 1+ beam line Tape stations for characterization and for β -decay study #### The 1⁺ beam line: the beam optics **EQT** -30 mm #### SPES core: Radiation Damage Study (SPES-RDS) #### An international cooperation - Department of Mechanical Engineering, UniBs - TRIGA Research Nuclear Reactor LENA, UniPv - European Spallation Source ESS ERIC, Sweden # **EXPERIMENTAL RAD-RESISTANCE**of GREASES in NEUTRON FIELDS STATE OF THE ART: very scarce literature **Front End and Target System**: advanced nuclearization phase. Target handling systems, <u>Heat resistance tests</u>, Nuclear Safety. Lubricants in the SPES Front-End TIS handling Lubricated bearings Integrated dose ≈ 30 MGy in 7 y CRITIC COMPONENT [1] PRODUCTS SELECTION ✓ 9 products [2] IRRADIATION in REACTOR FACILITY Neutrons + gamma [3] DOSIMETRY CALCULATIONS MCNP5 Monte Carlo Central Thimble irradiation facility TRIGA MARK II Research Reactor # SPES core: The Front-End Construction Status Steerers: tested successfully FE upgrading: the nuclearization phase Second diagnostic box: tested successfully (with controls) #### SPES core: Toward the first SPES RIBs #### 1st STEP: 40 MeV, 20 μA the BEAM INTENSITY depends on → halflife, cross-section, proton flux, diffusion and effusion time, ionization and transport efficiencies #### the next two steps of the commissioning phase 40 MeV, 20 μA, 10¹² f/s 40 MeV, 200 μA, 10¹³ f/s - Proton beam intensity: 200 μA - Proton beam sigma: 7 mm - Wobbling radius: 11 mm to high proton beam intensities (increase by a factor of 10) Courtesy of Mattia Manzolaro # SPES core: Development of the SiC - TIS Unit # Collimator (required for the 13 mm target) Suppression electrode 2 Collimator Suppression electrode 1 Suppression electrode 1 Suppression electrode 1 Seeger ring Alumina rings 40 MeV [W/m^3] #### SPES core: the Target Ion Source System #### WG 1: Off-line beam production @ LNL and characterization of the SPES ion sources (≈20 different stable beams accelerated so far...) Al ionization efficiency: influence of the neutrals deposition substrate Mg ionization efficiency Mass marker with Al(HNO₃)+ Tantalum foil with Al(HNO₃) Graphite foil with Al(HNO₃) directly in the transfer line Al ionization efficiency with PIS Graphite foil with Al(HNO₃) directly in the transfer line in the transfer line Further studies ongoing to implement an alterative technique for the estimation of the ionization efficiency # SPES core: the Target Ion Source System **Resonant Laser Source** for Selective ionization #### LNL OFF-LINE LABORATORY | | Isotope | Mass | Abundance | |----|---------|--------|-----------| | 1 | 112Sn | 111,90 | 0.97 (1) | | 2 | 114Sn | 113,90 | 0.66 (1) | | 3 | 115Sn | 114,90 | 0.34(1) | | 4 | 116Sn | 115,90 | 14.54 (9) | | 5 | 117Sn | 116,90 | 7.68 (7) | | 6 | 118Sn | 117,90 | 24.22 (9) | | 7 | 119Sn | 118,90 | 8.59 (4) | | 8 | 120Sn | 119,90 | 32.58 (9) | | 9 | 122Sn | 121,90 | 4.63 (3) | | 10 | 124Sn | 123,91 | 5.79 (5) | | TO | HCPST | 157,71 | 2012/21 C | Simion® simulation VS ToF acquisition & ToF mass resolution #### ToF performances: Tin laser resonant ionization #### **Surface ionization source:** ≈ 60 heating-cooling cycles ≈ 380 h (16 days) of operation at 2000-2200°C Plasma source: optimized to avoid hot-spot and to maximize current New alignment system ≈ 40 heating-cooling cycles ≈ 160 working hours @ 2000°C # SPES core: the Target Ion Source System **INSTALLATION PHASE** **Resonant Laser Source** for Selective ionization #### LNL- SPES ON-LINE LASER LABORATORY 3 independent pump lasers energizing three tunable Ti-Sapphire laser systems (possible generation of higher harmonics) 10 kHz repetition rate 650-980 nm (+ higher harmonics) # SPES core: Horizontal & Vertical handling Machines #### Beam selection: HRMS+Beam Cooler - Physical design ready, integration with beam cooler (coll. With LPC- CAEN) and beam lines under way - Preliminary dipole design and feasibility check with potential manufacturer done - Evolution: - Critical Design Review 4-5 October 2018: **Committee Members:** Richard Pardo (ANL), Chair Timothy Giles (CERN), Helmut Weick (GSI), Franck Varenne (GANIL) Review Report → upgraded version of the design. - Authorization to tender May 2019 - Commissioning 2022 Input requirements: $\Delta E = \pm 1 \text{ eV}$ Emittance $_{rms,n} = 0.68$ $\pi \text{mm mrad}$ lesign of the HRMS is based sumptions of beam quality. The design of the HRMS is based on assumptions of beam quality and thus relies on a RFQ cooler prior to the HRMS for preparing the beam (MOU. LPC- CAEN) 3D half-model with uniform field clamps | Table 2: Beam Dynamics Parameters | | | | | | | |-----------------------------------|-----|-------------------|--|--|--|--| | Geometric Emittance | 2.7 | 4σ mm*mrad | | | | | | Ion Mass (q=1) | 132 | amu | | | | | | Beam Energy | 260 | KeV | | | | | | RMS Energy Spread | 1 | eV | | | | | | RMS Spot size at image | 0.3 | mm | | | | | | Maximum X range | 440 | mm | | | | | | | | | | | | | #### BEAM COOLER #### n⁺ beam & Reacceleration # Towards ALPI: Charge Breeder + MRMS + RFQ - First operation with SIS (Rb, Cs) - Some stable isotopes need PIS (Sn, Sb, Te) - Characterization of the 1+ sources - Test of beam transport and transmission of the 1+ beam. Installation in two steps from June 2018 Make practice with the SPES-CB Debug software tools (CB and MRMS) Characterize the MRMS (WPB7) Verify all the techniques for contaminants reduction for different P_{mwr} f and B. Test the new aluminum plasma chamber (cont red). Acquire ε_{rms} of the n+ beam, for different P_{mw} f and B. # INFN-LPSC: Study for CB contaminants reduction - plasma chamber - Materials - Cleaning & conditioning - vacuum # Towards ALPI: Charge Breeder + MRMS + RFQ ## RFQ: new Injector for ALPI ## - Construction of vanes: tender completed in July 2016. Prototype in construction - 1st set of 4 electrodes (module 5) was successfuly delivered in **April 2017** - 2st set of 4 electrodes (module 4) was brazed in May 2017 - June 2017: Tender for tank construction ### **RFQ INSTALLATION PLAN** - 2018 Tooling for RFQ modules assembly - Ancillary parts engineering design completion - All Electrodes & some tanks produced ### 2019 - Completion of the production of the tank - Production of the tuners - Copperplating - **Quality Assurance Plan** - RF testing - Mechanical testing - Vacuum Test - Displacement of the ancillary system (RF, cooling skid) - Upgrade of the RF system #### 2020 - Installation of the electrical and water plants - Connection of the RFQ to the ancillary systems - Beam transmission >93% for $A/q=3\div7$ - RF power (four vanes) 100 kW (f=80 MHz) for up to 1 mA beam (...future high current stable beams) - Mechanical design and realization, similar to the Spiral 2one, takes advantage of IFMIF technological experience ## ALPI: upgraded performances New digital LLRF Controller; Production of new Diagnostic Boxes (the new boxes will be installed in a second phase '20-'21); • **Realignment campaign** of the magnetic lenses, cryostats, diagnostic boxes; May 2018 - Apr.2019 ## ALPI: upgraded performances TET SET SET SET ADIGE – ALPI Matching Section PIAVE TANDEM XTU 02 03 ## ALPI: upgraded performances 136Te20+ 6.80 138Xe20+ ◆ 138Te20+ 7.00 Energy from SPES Post-Accelerator as function of A/q 90Rb17+ 9.6 5.00 5.20 5.40 5.60 6.00 A/q 6.20 6.40 6.60 Stable Beam improvement with ALPI upgrading as function of A/q 04 05 A/q 06 07 ## **Summary** ## SPES INSTALLATION SCHEDULE | <u>Main Tasks</u> | | 201 | 7 | | | 20 | 018 | | | 2 | 019 | | | 2020 | | | 20 | 21 | | 202 | 22 | |--|----|------|------------|----|----|----|-----|----|----|----|-----|----|----|-------|----|------|----|------|----|-------|-------| | | Q1 | Q2 (| Q 3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 Q3 | Q4 | Q1 (| Q2 | Q3 (| Ղ4 | Q1 Q2 | Q3 Q4 | PHASE 2a: CHARGE BREEDER & MRMS installation | PHASE 2B: ISOL SYSTEM and wien filter | PHASE 2B: 1+ beam line operation | PHASE 3A: 1+ beam line up to Charge Breeder | PHASE 3B: bunchers & RFQ | _ | | | _ | | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | PHASE 3A: BEAM COOLER | | • | PHASE 3A: HRMS | | | | _ | | | | | | | | | | | | | | | | | | # Join LNL User Group ## SPES BEAMS (ReA) ## Toward a selected beam: in target reactions Beam selectivity may be different according to the production reactions and relative rates. ## Toward a selected beam: mass resolution ## Lol - n-rich RIBs | | | 19 Elements | | | |--------------------------|----|-------------|-------|--| | Total beams | 89 | | Lol % | | | Beams with 300_LRMS | 47 | | 53% | | | Benefit with 5.000_HRMS | 3 | → 50 beams | 56% | | | Benefit with 10.000_HRMS | 17 | → 67 beams | 75% | | | Benefit with 15.000_HRMS | 15 | → 82 beams | 92% | | | Benefit with 20.000_HRMS | 7 | → 89 beams | 100% | | ## SPES core: the Target Ion Source System ### Synthesis of a novel type of UC, using graphene Experiment at JRC-ActUsLab-Karlsruhe: n. AUL-176 - ➤On-line testing of the SPES target material and architecture @ ORNL (2010-2012) - >40 MeV, 50 nA proton beam on - a UCx target | 2011 Test
Low density
UC _x | —— 500 μm | |---|-----------| | | 2010 | 2011 | |-------------------------|-------|-------| | Density (g/cm³) | 4.25 | 2.59 | | Diameter (mm) | 12.50 | 13.07 | | Thickness
(g/cm²) | 0.41 | 0.41 | | Calculated porosity (%) | 58 | 75 | ### **Production Target** - Characterized by: - Material of the target (production yield) - Release time (≈1s for Fast Targets) - Element Vapour pressure ### Ion source target Characterized by: - Ionization efficiency - **Emittance** - The **SELECTIVITY** of the source depends on the ionization efficiency of each element. ### Yield of a nuclear species $$Y = \sigma \cdot \Phi_p \cdot N \cdot \varepsilon_d \cdot \varepsilon_e \cdot \varepsilon_i \cdot \varepsilon_t$$ It depends on → half-life, cross-section, proton flux, diffusion and effusion time, ionization and transport efficiencies