

SPES infrastructure - layout

SPES project: the phases

ISOL RIBs+ Post-Acc

Nuclear Medicine

Nuclear Medicine

Cyclotron

ISOL RIBs+ Post-Acc.

Nuclear Applications

SPES-γ Radioisotopes for Nuclear Medicine

- Cross Section measurements through target activation
- High power targets tests
- Radio-isotope/radio-pharmaceutical Production test facility

(99mTc, ⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ...)

- At present installed BL1 → ISOL1
- Partial BL2 → Faraday Cup

LARAMED

- High power beam line BL3b
 → RILAB-RI#3(up to 500 μA)
 → all elements at LNL
 → installation feb/march 2019
- Low power beam line BL3c
 → RILAB-A9c (up to 100
 nA) for cross section
 measurements → tender
 beginning 2019

BEST

 BL2 → ISOL2 - ready to be installed within 2019

Production facility operated by INFN and private partner for research and production of radioisotopes

(⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ⁶⁸Ge, ...)

SPES- γ Radioisotopes for Nuclear Medicine

LARAMED

Facility under construction Standard method

- Compounds for Radiochemistry Installed
- Plants installed
- Completion of instrumentation installation foreseen fall 2019
- Target station for cross section measurement – ready to be installed
- Target Station

Use of the cyclotron proton beam for radioisotope production

Production laboratory in Joint Venture with a private company (signed):

Selected isotopes of medical interest Sr-82/Rb-82 generator

ARRONAX (Nantes) – SPES collaboration: Isotopes and high-Power target developments Use of ISOL technique for Direct isotope on-line separation: very high specific activity (10⁴⁻⁵ than standard)

High specific activity radio PHARMaceuticals production with ISOL technique

HUGE SPECIFIC ACTIVITY

ISOL technique leads to the production of radioactive ion beams

(Isolpharm is a international INFN patent)

SPES-γ Radioisotopes for Nuclear Medicine

Accelerator based neutron sources have many applications: Nuclear astrophysics, Characterization of nuclear waste, BNCT... The cyclotron can also be used as a neutron source

Project at design study level. Partially funded under Ministry of Research and University (collaboration with TIFPA) \rightarrow SPARE (Space Radiation Shielding)

Neutron production by interaction of protons with heavy and light targets

- Fast neutron production: $\sim 6.10^{14} \text{ s}^{-1}$
- \square Neutron flux Φ_n @ 2.5 m: 5×10^8 n cm⁻² s⁻¹
 - Continuum spectra: SEE: Single Event Effect study
 - Quasi mono-energetic spectra:

The SPES ISOL RIB project at LNL

Beyond Isotopes discovery – challenges

Nuclear Structure & Reaction Dynamics:
Long Standing Questions

- Powering stellar explosions,
- neutron star crust etc

 50

 82

 82

 neutrons

Which are the limits for existence of nuclei?

- Where are the proton and neutron **drip lines** situated?
- Where does the nuclear chart end?

How does the nuclear force depend on varying proton-to-neutron ratios?

- What is the isospin dependence of the spin-orbit force?
- Which is the shell evolution moving far from stability (magic numbers, proton-neutron interaction, shell gap creation and disappearence)?

How to explain collective phenomena from individual motion?

- What are the phases (NEOS), relevant degrees of freedom, and symmetries of the nuclear many-body system?
- How are complex nuclei built from their basic constituents?
 - What is the effective nucleon-nucleon interaction?
 - How does QCD constrain its parameters?
- Which are the nuclei relevant for astrophysical processes and what are their properties?
 - What is the origin of the heavy elements?

126

Detector's portfolio: resident setups I

GALILEO

Phase 1:

25 HPGe + 25 BGO + ancillaries 240 ch digital electronics (AGATA)

Phase 2:

30 HPGe + 30 BGO + 10 GTC @ backward angles

Efficiency ~ 7.5%, PT ~ 60%

Courtesy of D. Mengoni

ANCILLARIES

Light charged particle EUCLIDES, SPIDER; TRACE Neutron detectors

N-WALL, NEDA Lifetime measurements) PLUNGER (from Cologne)

Recoil Detector RDF (from Kracow)

Fast timing high energy γ -detectors LaBr3 scintillators

Set-up for Coulomb Excitation measurements

COULEX is the most powerful and direct experimental method to study nuclear collectivity and shapes:

diagonal matrix elements give information on the **shape**

SPIDER: Silicon Ple DEtectoR:

Available @LNL since 2016

- 8 independent sectors, 8 strips + guard ring
- FWHM ~21 keV for α-particles @ ~5.5 MeV
- Modularity: with GALILEO

Cone configuration (7sectors) at backward angles ⇒ $\Delta\Theta = 37.4^{\circ}, \Omega/4\pi = 17.3\%$

7 LoI about Coulex presented for SPES.

Detector's portfolio: resident setups II

Work of P. Gagnant

PRISMA

Large acceptance magnetic spectrometer

 $\Omega \approx 80 \text{ msr}$;

 $B\rho_{max} = 1.2 \text{ Tm}$

 Δ A/A \sim 1/200

Energy acceptance ~ ±20%

ATS: an ACTIVE TARGET for SPES

1. ACTAR TPC

2. SpecMAT

GARFIELD

4π array for Light Charged particles and fragments

1) 192 MSGC - CsI(T) telescopes (30°-150°)

2-Rco IC-Si-CsI (5°-18°)

Detector's portfolio: "traveling" setups

AGATA: innovative γ -rays tracking array)

PARIS (High Energy γ-ray Detector Array)

PARIS with AGATA

FAZIA: LCP & fragments detection

NEDA (NEutron Detector Array)

1⁺ lines: physics with non post-accelerated beams

Join the LNL USER Committee: http://www.lnl.infn.it/index.php/it/usergrouphome

Technical Advisory Committee of SPES strongly recommended the idea of having installations for **physics** with non reaccelerated beams

A number of LOIs already presented to **2nd SPES International Workshop**

- Could exploit and help characterize first day beams
- Help characterization of beam contaminants
 - → useful for post-acceleration
- Gives access to complementary info to in-beam and reaction studies

ACTIONS:

- formation of a Working Group (convener M. Cinausero) to define location and technical needs
- SPES 1-day workshop held in Milano (20-21 April 2015): large number of participants

OUTCOME:

- 3 possible experimental areas are planned, 25 m² for each measuring point
- · Definition of beam line elements and beam monitoring
- Definition of the location of users control rooms

3 possible installations:

- 1- beta-decay Tape Station
- 2- Installation for Laser Spectroscopy
- 3- multi-purpose for external user equipment

Detector's portfolio: "low energy" setups

LNL β -decay Tape Station \rightarrow synergy with RIB characterization

Courtesy of G. Benzoni & T. Marchi

GEANT4 simulations:

spectrum coming from 10^7 events of the decay 33 Si \rightarrow 33 P β efficiency ~ 50%

 γ efficiency at 1 MeV ~ 9.9%.

P/T reaches 50% (single gamma of 1 MeV)

Veto detector in front of HPGe to reduce bg from e-

interacting in crystal

Experimental requirements for a β -TS at an ISOL facility:

- Very low energy incoming beam (40-60 keV) → no signal coming from implanted nucleus → PASSIVE IMPLANTATION ON MYLAR FOYL
- Possible contaminations (egs isobaric contaminations and/or longliving species produced in the decay chain) → Need for a fresh implantation point for each single Measurement → MOVING SYSTEM

Exotic nuclei: β -decay key features

- Region in chart of nuclides difficult to access
- Increasing Q_β values (up to 15 MeV)
- Lowering of S_n
- Large range of half-lives ~ 10ms -100 s
- Possible competing modes $(\alpha \text{ decay, cluster decay, delayed fission})$

1⁺ beam program @SPES

PDR populated through β -decay studies in very neutron rich nuclei

- The large Q_{β} -value window (>12 MeV) allows population at least the PDR.
- The β decay could populate states which are the PDR on the IAS(R) of the mother nucleus

Proof of principle in a recently published paper

PRL 116, 132501 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 APRIL 2016

Investigating the Pygmy Dipole Resonance Using β Decay

M. Scheck, ^{1,2,*} S. Mishev, ^{3,4} V. Yu. Ponomarev, ⁵ R. Chapman, ^{1,2} L. P. Gaffney, ^{1,2} E. T. Gregor, ^{1,2} N. Pietralla, ⁵ P. Spagnoletti, ^{1,2} D. Savran, ⁶ and G. S. Simpson ^{1,2}

Mother	J^{π}	Daughter	$S_n[keV]$	$Q_{\beta} [\text{keV}]$	I [pps] $@5\mu$ A	I [pps] @200μA
⁸⁴ Ga	(0^{-})	$^{84}\mathrm{Ge}$	5243	12900	1.01×10^{3}	4.02×10^4
$^{86}{ m Br}$	(1^{-})	$^{86}{ m Kr}$	9857	7626	1.93×10^{7}	7.73×10^{8}
$^{96}\mathrm{Y}$	0-	$^{96}{ m Zr}$	7856	7096	1.12×10^7	4.47×10^{8}
^{98}Y	(0^{-})	$^{98}{ m Zr}$	6415	8824	5.30×10^5	2.12×10^7
$^{130}\mathrm{In}$	1 ⁽⁻⁾	$^{136}\mathrm{Sn}$	7596	10249	1.93×10^4	7.72×10^{5}
136I	(1^{-})	$^{136}\mathrm{Xe}$	8084	6930	2.6×10^{8}	$1.04 \times 10^{1}0$
$^{140}\mathrm{Cs}$	1-	$^{140}\mathrm{Ba}$	6428	6220	8.53×10^{8}	3.4×10^{10}
$^{142}\mathrm{Cs}$	0-	$^{142}\mathrm{Ba}$	6181	7325	3.35×10^{7}	1.34×10^9
$^{144}\mathrm{Cs}$	1(-)	$^{144}\mathrm{Ba}$	5901	8500	4.35×10^{6}	1.74×10^{8}
$^{146}\mathrm{Cs}$	1-	$^{146}\mathrm{Ba}$	5495	9370	1.12×10^5	4.46×10^{6}

A. Gottardo et al. – PLB 772 (2017) 779

Example: 134 In \rightarrow 134 Sn (Q_{β} = 14.7 MeV) $_{Vf_{7/2}} \rightarrow \pi g_{9/2}$

 β decay: $v2f_{7/2}$ -> $\pi 2f_{7/2}$, $\pi 2f_{5/2}$;

A New Spectrometer for Internal Conversion Electrons @ SPES 1+ (INFN Firenze, INFN Camerino, INFN Milano, LNL)

Electric Monopole Transitions (E0)

- Used for instance to study breathing modes (nuclear compressibility), a-clustering and shape coexistence
- Shape coexistence & E0 transitions, a simplified picture:

Measurement of $\rho^2(E0)$ ($\rho^2(E0) \sim |<0^+_1||E0||0^+_2>|^2$) \Longrightarrow Shape of excited states and mixing between them

Continuous β-decay background:

it can be acquired as unwanted coincidences with γ - rays or conversion electrons in the $\beta\text{-}detector$

► y-Compton background:

γ-rays can be directly detected in the Si(Li) (only Compton scattering) and indirectly if they are scattered in the materials in the chamber

► e⁻ - backscattering:

enhanced at high entrance angles (thus higher with a detector just in front of the activity)

Magnetic Transport System

- Central absorber to shield from γ-rays
- Magnetic lenses, composed by permanent magnets, to re-focalize the electrons

Courtesy of G. Benzoni & A. Nannini

"On closed shells in nuclei"

Courtesy of J.J. Valiente

Mayer et al., PR75, 1969 (1949) & Jensen et al., PR75 1766 (1949)

"On closed shells in nuclei"

- Study of the low-lying properties of isotopes near by ⁷⁸Ni and beyond N=50 with the SPES beams.
- Shell evolution in the region NN and NNN interactions, rigidity of the gaps when going towards ⁷⁸Ni
- Changes due to 3N forces are amplified in neutron-rich nuclei and will play a crucial role for matter at the extremes.
- Experimentally: Use of Coulomb excitation, (d,p) and (t,α) reactions to study the region
- Instrumentation: Sensitive detection systems to be used like:
 AGATA, GALILEO, TRACE, DANTE, SPIDER
- There is no a universal technique to measure the physical properties along an isotopic chain
- Concerns: beam purity > 20%, intensity 10⁴-10⁵, energy 10MeV/u
 - Coulomb excitation neutron-rich ^{86,88}Se and ⁸⁴Ge Evolution of deformation quasi-SU(3).
 - Coulomb excitation ^{75,77}Cu, population of collective states Infer deformation on the Ni isotopes.
 - (d,p) 81 Ga, 84 Se, 82 Ge, 80 Zn single particle orbital beyond N=50 d_{5/2}, s_{1/2}, d_{3/2}, g_{7/2} and h_{11/2}. Gap stability. Monopole evolution.
 - (t, α) to selectively populate single proton states in odd-A ^{73,75,77}Cu isotopes- $p_{3/2}$, $f_{5/2}$ and $f_{7/2}$. Proton removal from the GS of Zn.

Courtesy of J.J. Valiente

⁷³Cu: 1,8 10⁵ - ⁷⁵Cu: 2,8 10⁴ - ⁷⁷Cu: 1,6 10³

 74 Zn: 7,0 10⁵ – 76 Zn: 2,4 10⁵ – 78 Zn: 2,0 10⁴ –

⁸⁰Zn: 1,0 10³ ⁸¹Ga: 2.2 10⁵

82Ge: 2,3 105 - 84Ge: 1,3 104

84Se: 2,9 10⁶ - 86Se: 1,3 10⁵ - 88Se: 2,7 10³

Transfer studies in neutron-deficient nuclei with the neutron detector **NEDA**

Flexible array – variability of focal positions (experiment dependent)

Various physics campaigns depending on the configuration

Neutron multiplicity filter.

Pulse shape discrimination – online trigger selectivity **Off-line implementation** of traditional algorithms and/or

Neural Networks

Angular resolution: $\theta(0.5 \text{ m}) = \pm 7^{\circ} - \theta(1 \text{ m}) = \pm 4^{\circ}$

Timing better than 1 ns. Same performance digital/analog.

Energy resolution $\Delta E/E$: NEDA 1m – 40%, NEDA 7m – 5%

- Possible proposals with NEDA, AGATA/GALILEO and TRACE-GASPARD to perform with light SPES beams from 4 to 10 MeV/u:
 - Transfer reaction, such as (³He,n), (d,n), etc.
 - Fusion evaporation reactions
- Lifetime measurements → target development 3He, d.
- Light neutron-deficent SPES beams → required some developments.

SPES core: the cyclotron

BEST B70

- H-
- •35-70 MeV
- •0.750 mA
- 2 exits

Main Parameters					
Accelerator Type	Cyclotron AVF 4 sectors				
Particle	Protons (H ⁻ accelerated)				
Energy	Variable within 30-70 MeV				
Max Current Accelerated	750 μA (52 kW max beam power)				
Available Beams	2 beams at the same energy (upgrade to different energies)				
Max Magnetic Field	1.6 Tesla				
RF frequency	56 MHz, 4 th harmonic mode				
Ion Source	Multicusp H ⁻ I=15 mA, Axial Injection				
Dimensions	Φ=4.5 m, h=1.5 m				
Weight	150 tons				

SAT and commissioning completed (2017)
Training of LNL personnel during commissioning completed (December 2017)
Operation (March 2018)

SPES core: the cyclotron

- May $30^{th} 2016 \rightarrow dual extraction 70 MeV beam 3 µA$
- Sept 9th 2016 → acceleration 70 MeV beam 500 μA
- Oct Nov 2016 → preliminary endurance test 250 μA, 40 MeV
- End Nov 2016 → source HV transformer broke before completing Site Acceptance Test
- June July 2017 → endurance test completed
- September 2017 → cyclotron accepted
- October December 2017 → LNL personnel operation training
- February- March 2018 → LNL cyclotron operation

High power Beam Dump 50kW

Up to **500 μA** current and **70 MeV** energy proton beam (**35 kW**) delivered to the high power Beam Dump
Less than 1% beam loss

Very good Cyclotron vacuum performance (8x10⁻⁸ mbar with beam ON)

SPES core: the RIB production system

Courtesy of Mattia Manzolaro

RIB bunker

Gas recovery system 1+ beam line

Tape stations for characterization and for β -decay study

The 1⁺ beam line: the beam optics

EQT

-30 mm

SPES core: Radiation Damage Study (SPES-RDS)

An international cooperation

- Department of Mechanical Engineering, UniBs
- TRIGA Research Nuclear Reactor LENA, UniPv
- European Spallation Source ESS ERIC, Sweden

EXPERIMENTAL RAD-RESISTANCEof GREASES in NEUTRON FIELDS

STATE OF THE ART: very scarce literature

Front End and Target System: advanced nuclearization phase. Target handling systems, <u>Heat resistance tests</u>, Nuclear Safety.

Lubricants in the SPES Front-End

TIS handling
Lubricated bearings
Integrated dose ≈ 30 MGy in 7 y
CRITIC COMPONENT

[1]
PRODUCTS
SELECTION

✓ 9 products

[2]
IRRADIATION in
REACTOR FACILITY
Neutrons + gamma

[3]
DOSIMETRY
CALCULATIONS
MCNP5 Monte Carlo

Central Thimble irradiation facility
TRIGA MARK II Research Reactor

SPES core: The Front-End Construction Status

Steerers: tested successfully

FE upgrading: the nuclearization phase

Second diagnostic box: tested successfully (with controls)

SPES core: Toward the first SPES RIBs

1st STEP: 40 MeV, 20 μA

the BEAM INTENSITY depends on → halflife, cross-section, proton flux, diffusion and effusion time, ionization and transport efficiencies

the next two steps of the commissioning phase

40 MeV, 20 μA, 10¹² f/s

40 MeV, 200 μA, 10¹³ f/s

- Proton beam intensity: 200 μA
- Proton beam sigma: 7 mm
- Wobbling radius: 11 mm

to high proton beam intensities (increase by a factor of 10)

Courtesy of Mattia Manzolaro

SPES core: Development of the SiC - TIS Unit

Collimator (required for the 13 mm target) Suppression electrode 2 Collimator Suppression electrode 1 Suppression electrode 1 Suppression electrode 1 Seeger ring Alumina rings 40 MeV [W/m^3]

SPES core: the Target Ion Source System

WG 1: Off-line beam production @ LNL and characterization of the SPES ion sources

(≈20 different stable beams accelerated so far...)

Al ionization efficiency: influence of the neutrals deposition substrate

Mg ionization efficiency

Mass marker with Al(HNO₃)+
Tantalum foil with Al(HNO₃)
Graphite foil with Al(HNO₃)
directly in the transfer line

Al ionization efficiency with PIS

Graphite foil with Al(HNO₃)
directly in the transfer line

in the transfer line

Further studies ongoing to implement an alterative technique for the estimation of the ionization efficiency

SPES core: the Target Ion Source System

Resonant Laser Source for Selective ionization

LNL OFF-LINE LABORATORY

	Isotope	Mass	Abundance
1	112Sn	111,90	0.97 (1)
2	114Sn	113,90	0.66 (1)
3	115Sn	114,90	0.34(1)
4	116Sn	115,90	14.54 (9)
5	117Sn	116,90	7.68 (7)
6	118Sn	117,90	24.22 (9)
7	119Sn	118,90	8.59 (4)
8	120Sn	119,90	32.58 (9)
9	122Sn	121,90	4.63 (3)
10	124Sn	123,91	5.79 (5)
TO	HCPST	157,71	2012/21 C

Simion® simulation VS ToF acquisition & ToF mass resolution

ToF performances: Tin laser resonant ionization

Surface ionization source:

≈ 60 heating-cooling cycles

≈ 380 h (16 days) of operation at 2000-2200°C

Plasma source: optimized to avoid hot-spot and to maximize current New alignment system

≈ 40 heating-cooling cycles

≈ 160 working hours @ 2000°C

SPES core: the Target Ion Source System

INSTALLATION PHASE

Resonant Laser Source for Selective ionization

LNL- SPES ON-LINE LASER LABORATORY

3 independent pump lasers energizing three tunable Ti-Sapphire laser systems (possible generation of higher harmonics)

10 kHz repetition rate 650-980 nm (+ higher harmonics)

SPES core: Horizontal & Vertical handling Machines

Beam selection: HRMS+Beam Cooler

- Physical design ready, integration with beam cooler (coll. With LPC- CAEN) and beam lines under way
- Preliminary dipole design and feasibility check with potential manufacturer done
- Evolution:
- Critical Design Review 4-5 October 2018:

Committee Members: Richard Pardo (ANL), Chair Timothy Giles (CERN), Helmut Weick (GSI), Franck Varenne (GANIL)

Review Report → upgraded version of the design.

- Authorization to tender May 2019
- Commissioning 2022

Input requirements: $\Delta E = \pm 1 \text{ eV}$ Emittance $_{rms,n} = 0.68$ $\pi \text{mm mrad}$ lesign of the HRMS is based sumptions of beam quality.

The design of the HRMS is based on assumptions of beam quality and thus relies on a RFQ cooler prior to the HRMS for preparing the beam (MOU. LPC- CAEN)

3D half-model with uniform field clamps

Table 2: Beam Dynamics Parameters						
Geometric Emittance	2.7	4σ mm*mrad				
Ion Mass (q=1)	132	amu				
Beam Energy	260	KeV				
RMS Energy Spread	1	eV				
RMS Spot size at image	0.3	mm				
Maximum X range	440	mm				

BEAM COOLER

n⁺ beam & Reacceleration

Towards ALPI: Charge Breeder + MRMS + RFQ

- First operation with SIS (Rb, Cs)
- Some stable isotopes need PIS (Sn, Sb, Te)
- Characterization of the 1+ sources
- Test of beam transport and transmission of the 1+ beam.

Installation in two steps from June 2018

Make practice with the SPES-CB Debug software tools (CB and MRMS) Characterize the MRMS (WPB7)

Verify all the techniques for contaminants reduction for different P_{mwr} f and B.

Test the new aluminum plasma chamber (cont red). Acquire ε_{rms} of the n+ beam, for different P_{mw} f and B.

INFN-LPSC: Study for CB contaminants reduction

- plasma chamber
- Materials
- Cleaning & conditioning
- vacuum

Towards ALPI: Charge Breeder + MRMS + RFQ

RFQ: new Injector for ALPI

- Construction of vanes: tender completed in July 2016. Prototype in construction

- 1st set of 4 electrodes (module 5) was successfuly delivered in **April 2017**
- 2st set of 4 electrodes (module 4) was brazed in May 2017
- June 2017: Tender for tank construction

RFQ INSTALLATION PLAN

- 2018 Tooling for RFQ modules assembly
 - Ancillary parts engineering design completion
 - All Electrodes & some tanks produced

2019

- Completion of the production of the tank
- Production of the tuners
- Copperplating
- **Quality Assurance Plan**
 - RF testing
 - Mechanical testing
 - Vacuum Test
- Displacement of the ancillary system (RF, cooling skid)
- Upgrade of the RF system

2020

- Installation of the electrical and water plants
- Connection of the RFQ to the ancillary systems

- Beam transmission >93% for $A/q=3\div7$
- RF power (four vanes) 100 kW (f=80 MHz) for up to 1 mA beam (...future high current stable beams)
- Mechanical design and realization, similar to the Spiral 2one, takes advantage of IFMIF technological experience

ALPI: upgraded performances

New digital LLRF Controller;

 Production of new Diagnostic Boxes (the new boxes will be installed in a second phase '20-'21);

• **Realignment campaign** of the magnetic lenses, cryostats, diagnostic boxes;

May 2018 - Apr.2019

ALPI: upgraded performances

TET SET SET SET

ADIGE – ALPI Matching Section

PIAVE TANDEM XTU

02

03

ALPI: upgraded performances

136Te20+

6.80

138Xe20+ ◆ 138Te20+

7.00

Energy from SPES Post-Accelerator as function of A/q

90Rb17+

9.6

5.00

5.20

5.40

5.60

6.00

A/q

6.20

6.40

6.60

Stable Beam improvement with ALPI upgrading as function of A/q

04

05

A/q

06

07

Summary

SPES INSTALLATION SCHEDULE

<u>Main Tasks</u>		201	7			20	018			2	019			2020			20	21		202	22
	Q1	Q2 (Q 3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q3	Q4	Q1 (Q2	Q3 (Ղ4	Q1 Q2	Q3 Q4
PHASE 2a: CHARGE BREEDER & MRMS installation																					
PHASE 2B: ISOL SYSTEM and wien filter																					
PHASE 2B: 1+ beam line operation																					
PHASE 3A: 1+ beam line up to Charge Breeder																					
PHASE 3B: bunchers & RFQ																					
	_			_		_	_	_		_	_	_		_							
PHASE 3A: BEAM COOLER		•																			
PHASE 3A: HRMS				_																	

Join LNL User Group

SPES BEAMS (ReA)

Toward a selected beam: in target reactions

Beam selectivity may be different according to the production reactions and relative rates.

Toward a selected beam: mass resolution

Lol - n-rich RIBs

		19 Elements		
Total beams	89		Lol %	
Beams with 300_LRMS	47		53%	
Benefit with 5.000_HRMS	3	→ 50 beams	56%	
Benefit with 10.000_HRMS	17	→ 67 beams	75%	
Benefit with 15.000_HRMS	15	→ 82 beams	92%	
Benefit with 20.000_HRMS	7	→ 89 beams	100%	

SPES core: the Target Ion Source System

Synthesis of a novel type of UC, using graphene

Experiment at JRC-ActUsLab-Karlsruhe: n. AUL-176

- ➤On-line testing of the SPES target material and architecture @ ORNL (2010-2012)
- >40 MeV, 50 nA proton beam on
- a UCx target

2011 Test Low density UC _x	—— 500 μm

	2010	2011
Density (g/cm³)	4.25	2.59
Diameter (mm)	12.50	13.07
Thickness (g/cm²)	0.41	0.41
Calculated porosity (%)	58	75

Production Target

- Characterized by:
- Material of the target (production yield)
- Release time (≈1s for Fast Targets)
- Element Vapour pressure

Ion source target

Characterized by:

- Ionization efficiency
- **Emittance**
- The **SELECTIVITY** of the source depends on the ionization efficiency of each element.

Yield of a nuclear species

$$Y = \sigma \cdot \Phi_p \cdot N \cdot \varepsilon_d \cdot \varepsilon_e \cdot \varepsilon_i \cdot \varepsilon_t$$

It depends on → half-life, cross-section, proton flux, diffusion and effusion time, ionization and transport efficiencies

