

http://www.joaopedroramos.com joao.pedro.ramos@cern.ch/@kuleuven.be

ISOLDE Workshop and Users meeting 2018 6th of December 2018

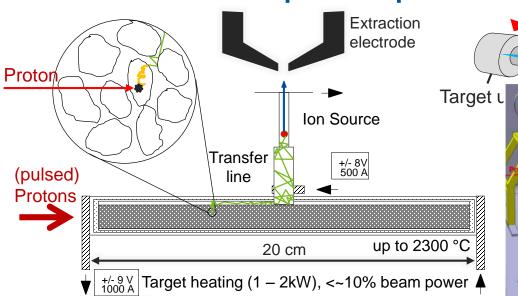
The MEDICIS Facility
Overview, 2018 operation report and plans for CERN long shutdown 2

MEDICIS Coordinator – new function

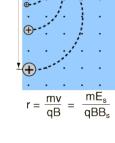
- Schedule target irradiation and isotope separation
 - Machine development or MEDxxx
- Schedule and coordinate interventions and technical stops
- Liaise with:
 - ISOLDE physics coordinator
 - MEDICIS project leader
 - ISOLDE technical coordinator
 - ISOLDE machine supervisors (protons)
 - MEDICIS operators
 - Radiation protection staff

- PhD in Materials Science and Engineering
- +7 years of radioactive ion beam development (ISOLDE target operation)
- Tasks:
 - 50% MEDICIS Coordination
 - 50% Research
 - Target and ion source development

Coordinating MEDICIS since August 2018



MEDICIS overview



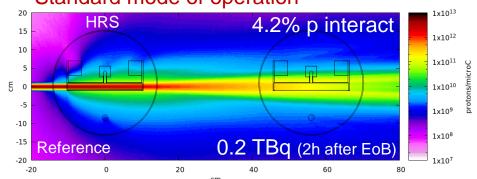
ISOL Isotope Separation Option

Extraction optics Mass separator

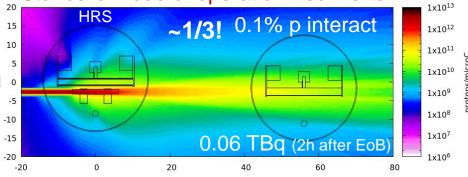
- 1. Production
- 2. Diffusion
- 3. Effusion
- 4. Ionization
- 5. Mass Separation
- 6. Transport

Beam Int. = σ . j. N_t . ε

 $\varepsilon = \varepsilon_{diff} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{trans}$

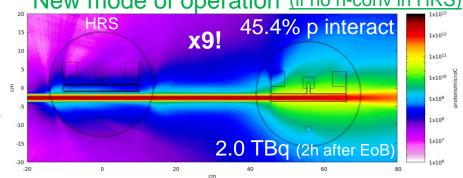

EN J. P. Ramos | 6th of December 2018

j – Proton flux [cm⁻²] σ – Cross section [mb] STI ISOLDE Workshop and Users meeting 2018- Efficiency [%]


 N_t – Nr of exposed atoms [dim]

MEDICIS Irradiation modes

Standard mode of operation - converter

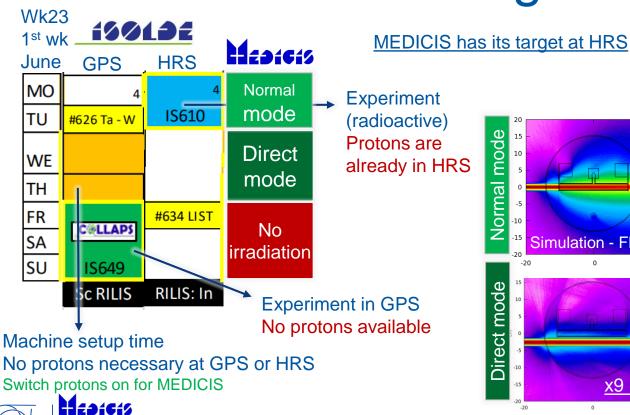

2.3E18 p (3 days) 0.5 Sv/h 30 min after EOB

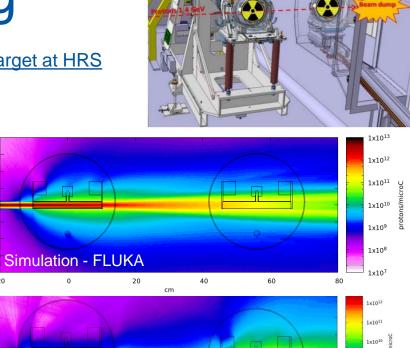
1.5E18 p (2 days) 1.9 Sv/h 30 min after EOB

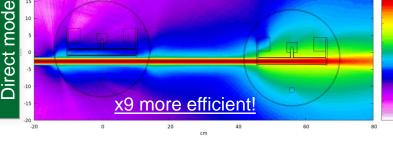
Factor 6x seen in practice (TBC)

Use proton beam during setup times, no interaction to ISOLDE

New mode of operation (if no n-conv in HRS)






EN J. P. Ramos | 6th of December 2018 STI ISOLDE Workshop and Users meeting 2018 FLUKA simulation with UCx target in HRS and Ta target in MEDICIS – 4.9E17 protons (15 hours)

MEDICIS Scheduling

CÉRN

mode

1x10⁹

Operation /

Insert target

 12 min – protons stopped (only at HRS)

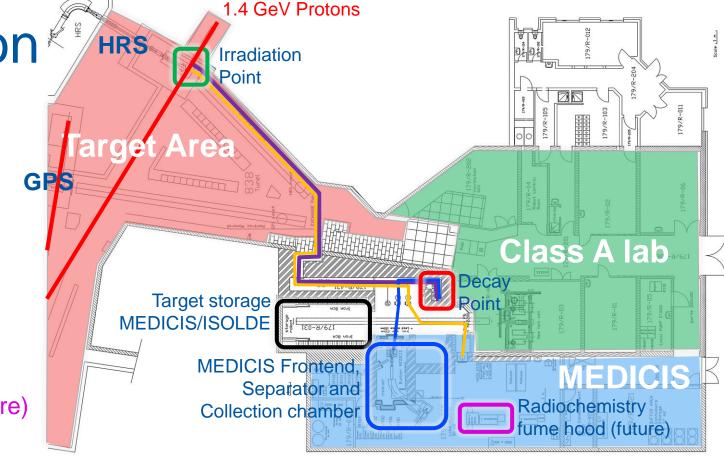
Irradiation

Transparent to ISOLDE

Retrieve target

 12 min – protons stopped (only at HRS)

Decay


 Until target reaches <1Sv/h (at 26 cm)

Install in Frontend

Isotope Extraction

Radiochemistry (future)


- Chemical purification
- Shipping

MEDICIS Collaboration

2nd Board happened in 3rd of October 3rd Board will happen February/March

1st MEDICIS Collaboration Board Meeting

- III Wednesday 21 Feb 2018, 09:00 → 17:00 Europe/Zurich
- **♀** 4-3-001 (CERN)

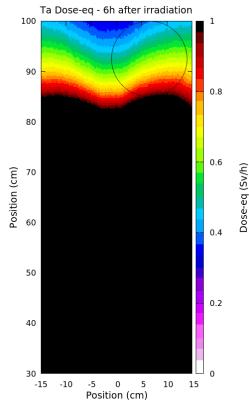
Description Liste de participants:

- Thierry Stora (CERN)
- · Frédérick Bordry (CERN's Director for Accelerators and Technology)
- Simone Gilardoni (CERN)
- Thomas Elia Cocolios (KULeuven)
- · Prof. Oyen Wim (ICR Institute of Cancer Research, UK)
- Nick van Dermeulen (PSI)
- Antonio Paulo (Instituto Superior Técnico, Portugal)
- Dr. Michel Forni (Hôpital de La Tour, Geneva)
- Prof. Ismael Martel Bravo (FABRIS Fundación Andaluza Beturia para la Investigación en Salud, Spain).
- Prof. Ferid Haddad (Arronax, France)
- Prof. Klaus Wendt (University of Mainz, Germany)
- Prof. Martin Walter (Head of Nuclear Medicine and Molecular Imaging, Geneva Hospital)
- Gerda Neyens (CERN)
- David Viertl (Lausanne University Hospital Center)
- Dante Gregorio (CERN)
- Tor Bjørnstad (IFE Institute for Energy Technology, Norway)
- Frank Bruchertseifer (European Commission)

Via remote-connection:

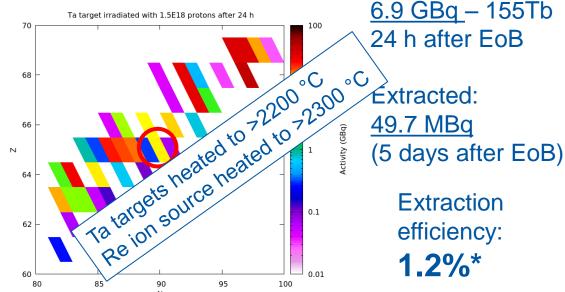
- Prof. Susanta Lahiri (SINP The Saha Institute of Nuclear Physics, India)
- Dr Martyn Sené (Deputy CEO for the National Physical Laboratory NPL)
- Prof. John Prior Head of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital Center)

MEDICIS during 2018


MEDICIS Tb extraction efficiency

MD4 - 155Tb - Mid August 2018

Irradiation for 2 days (1.5E18 protons)

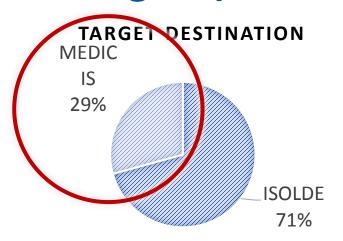


MEDICIS Tb extraction efficiency

Irradiation for 2 days (1.5E18 protons)

ISOLDE - 1.5% 149Tb (600 MeV - 80s-90s)

Already reached 5% **End of September**



*value fluctuates from target to target *155Tb after EoB – 4.0 GBq

Target production

Targets reused up to 5 times!

MEDICIS budget and manpower contribution

Total targets assembled end of 2018: 49

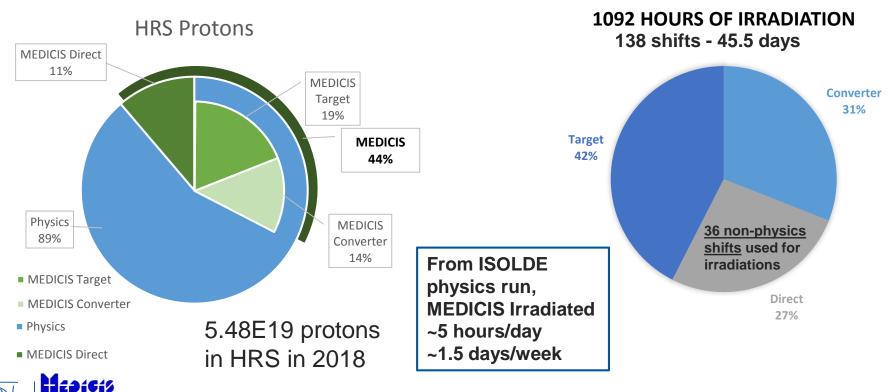
Delivered to ISOLDE: 29

Delivered to MEDICIS: 10 + 2 in December

Used for development: 8 (16%)

#	Isotope	Target	Ion source
5 (4)	^{149,152,155} Tb, ¹⁶⁵ Tm	Tantalum (3 with O ₂ leak)	Surface – Rhenium/Tungsten
1		Large container Ta	Surface - Tungsten
2 (1)	²²⁵ Ra(Rn), ⁶⁷ Cu	Uranium carbide	VADIS – Hot transfer line
2 (1)	⁴⁷ Sc	Titanium	VADIS – Hot transfer line
4	¹⁶⁹ Er, ^{155,152} Tb	External source - ILL (Grenoble), Arronax (Nantes), NMC (Riga)	Surface – Rhenium/Tungsten
1	Any (11C)	Proton irradiation stand (any material) – no source	

15 targets (12 in 2018) since MEDICIS startup (Oct 2017) 12 targets still operational


MEDICIS has a quota of 10 targets per year Have more now, but will reuse in 2019!

MEDICIS Statistics


26 irradiations 19 isotope extractions (or attempts)

KU LEUVEN

149Tb – race against time

- 1. Vacuum pumping (30 min)
- 2. Water cooling (HV operation) used to be 4 h, now is 15 min
- 3. Target heating (~1.5 h)
- 4. Beam setup (with target below optimum release T) 1h

t_{irr} + t_{decay}

J. P. Ramos | 6th of December 2018

STI | ISOLDE Workshop and Users meeting 2018

Challenging! Need good coordination and good team!

Results from MEDICIS

Main Achievements:

- Extraction of ¹⁵⁵Tb
 - Delivery of ¹⁵⁵Tb to NPL (England) and then to C2TN (Portugal)
- Extraction of ¹⁴⁹Tb (impure)
- Extraction of ¹⁴⁹Tb + 16O (almost pure)
 - Delivery to CHUV (Lausanne)
- Separation and extraction of ¹⁶⁹Er ILL external source
 - Fulfilled MEDICIS experiment
- Extraction of ¹⁶⁵Tm opportunistic isotope
 - Delivered to CHUV (Lausanne)
- ¹¹C diffusion studies (with help from SSP)
 - Fulfilled MEDICIS Experiment

Activities from few MBq to 100 MBq

Still improving!

Ongoing Tb experiments:

 Tb activities are increasing and being more consistent

Problems:

- Mass separator hall probe
 - Low resolution at high masses
- Large container target broken
- Collection chamber sample arm
- No ⁴⁷ScF due to gas problem
- No ⁶⁷Cu and ²²⁵Ra due to technical problems on the UCx targets
- Frontend electrode stuck

Irradiations for ISOLDE at MEDICIS

MEDICIS collaboration board approved use of MEDICIS for non-medical applications, as long as they are approved by INTC.

⁷Be (53.22d) at 5 MeV/u for IS554

²²³RaF (11.4d), ²²⁵RaF (14.8d),

²²⁶RaF (1600 a) for IS657

#635-UCx - 7.96E17 p (direct)

+4 indirect irradiations

2.2 days - EoB 23/10/2018

#637-UCx - 6.74E17 p (direct) 3.4 days – EoB 19/10/2018

6 extra days of beamtime (16/11->21/11) for ISOLDE

12 extra days of beamtime (21/11->03/11) for ISOLDE

IS554

Total of 18 days (~54 shifts) of extra beam time for ISOLDE physics thanks to MEDICIS!

IS657

149Tb implantation in salt

Normal:

Zn coated Au foil

Advantages:

- Potassium Nitrate (KNO₃) easy dissolution
- Collection on the TbO mass (149+16 = 165)
- No contaminants simplify radiochemistry
- Low activity (1.8 MBq)

Development on-going to promote TbO

formation

V1

V2

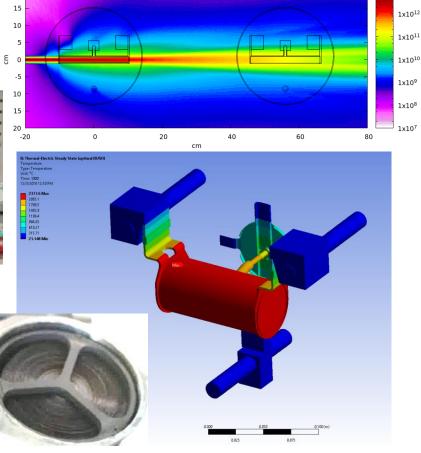
V3

- Normal 1 Tb to 20 contaminant
- Now: 1.8 Tb to 1 contaminant (Gd)

J. P. Ramos | 6th of December 2018 **STI** ISOLDE Workshop and Users meeting 2018

First shipping of 149Tb from MEDICIS (to CHUV)

Large Ta container



ISOLDE

2 cm diameter 20 cm length 60 cm³ volume **MEDICIS**

5 cm diameter 10 cm length 200 cm³ volume

V. Samothrakis, M. Ballan, S. Marzari, et al.

J. P. Ramos | 6th of December 2018 **STI** ISOLDE Workshop and Users meeting 2018

1000A (normally ~750A) Reach 2400 °C

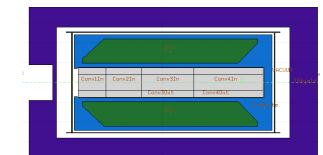
Large Ta container

Container tested offline and reach temperatures predicted by the simulations.

Ta heavily recrystallized

Work of V. Samothrakis also to improve the target temperature uniformity!

Target irradiated at MEDICIS!


- Container failed at the end of the collection
- Not much 155Tb was seen
- Presence of graphite can trap Tb

Twin container used for the p2n

Spin-off to ISOLDE target

and ion source shielding

converter annular prototype
(J.P. Ramos, et al.)
See talk of S. Rothe

STI ISOLDE Workshop and Users meeting 2018

Plans for CERN Long Shutdown 2

CERN Long Shutdown 2 (LS2)

MEDICIS is probably one of the few facilities at CERN that runs during LS2

- 169Er from ILL in Grenoble
- 152,155Tb from Arronax in Nantes
- ⁴⁷Sc from NMC in Riga

Operation of 1 to 2 weeks per month

Plan of 2 technical stops – for maintenance and upgrades

MELISSA, radiochemistry, others...

MEDICIS Technical Stops

Follow CERN facilities Schedule

Plan technical stops, commissioning and operation phases

Technical stop 1

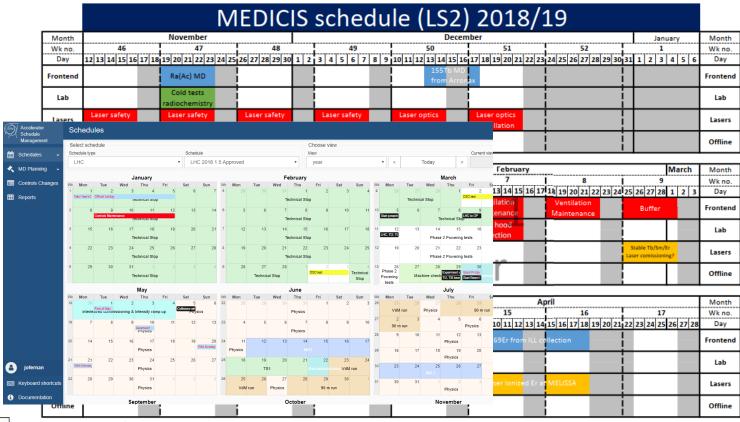
07/01/2018 -> 01/03/2018

- Laser installation and commissioning
- Gas system upgrade (molecular beams)
- Separator magnet upgrade
- Radiochemistry fume hood installation
- Targets to ISR
- Frontend maintenance

Technical stop 2

(TBD)

- Thermocouple controls install
- Gas system controls install
- Collection chamber vacuum upgrade
- Laser 2nd set of optics installation
- Tasks not done from technical stop 1



Schedule LS2 MEDICIS v3

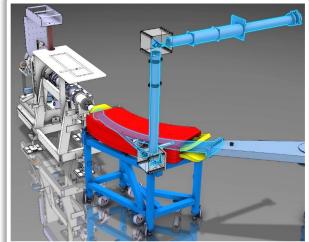
Soon to be implemented in the official CERN scheduling tool (ASM)

Medicis

MELISSA - Lasers at MEDICIS

TODO list:

- Room (floor, painting and SAS)
- **Ventilation**
- Laser tables
- Infrastructure (power, network)
- Laser safety system Ongoing
- Laser optics installation End of Jan
- Ouring Technical stop Commissioning of laser beam to frontend Early February
 - Stable beam tests (Er, Tb, Sm one laser) Last week of February
 - Radioactive laser ionized Tb Early March


Work of V. Gadelshin

(R. Formento)

Max efficiency for Er: 0.3%

1st laser is here

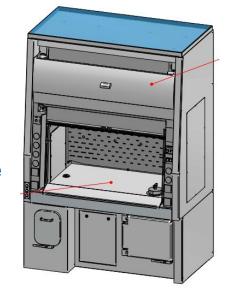
2nd coming in February

EN J. P. Ramos | 6th of December 2018 **STI** ISOLDE Workshop and Users meeting 2018 V. Fedosseev, V. Gadelshin, B. Marsh T.E. Cocolios, K. Dockx, K. Wendt,

25

Radiochemistry at MEDICIS

Zn deposited in Au foil



KNO₃ deposited in Al foil

- In development
- No licensing at MEDICIS yet (2018)
- Radiochemistry was being done with partners
- Planed radiochemistry commissioning during technical stops.

Radiochemistry fume hood will be installed in January in MEDICIS lab

M. Khan, N.-T. Vuong, et al.

Thank you! Merci! Obrigado!

Comments or questions?

A **big thanks** to the MEDICIS local team (the dream team):

Thierry Stora (project leader), Cristina Ferrari (secretary), Richard Catherall (Section leader)

Radiochemistry: Moazam Khan, Nhat-Tan Vuong

Robot Operation: Giordano Lili, Giacomo Lunghi, Jean Luis Grenard

Safety: Ana Paula Bernades, Julien Riegert, Beatriz Conde Fernandez

Operation: Laura Lambert, Eric Chevallay, Pascal Fernier Spectro and shipping: Nicolas Riggaz, Philippe Bertreix

RP: Fabio, Pozzi, Alexandre Dorsival, Matthieu Deschamps, Elodie Aubert

Engineering: Stefano Marzari, Vasileos Samothrakis, Vincent Barozier

LabVIEW and controls: Kevin Develle, Cedric Charrondiere, Christophe Mitifiot

ISOLDE: Karl Johnston and ISOLDE operation team

ISOLDE technicians: Julien Thiboud, Bernard Crepieux, Ermanno Barbero, Andres Vietez Suarez

Lasers (MELISSA): Valentine Fedosseev, Vadim Gadelshin, Bruce Marsh, Thomas Cocolios, Kristof Dockx, Klaus

Wendt

and Julien Para-Lopez, Simon Stegemann, Marco Buzio, Roberto Formento Cavaier, Simone Gilardoni, Jose Somoza.

MEDICIS Promed team, the MEDICIS Collaboration and many others!

All the external partners that have been actively discussing with us!

Abstract submission

deadline: 28th February 2019