

# LS2 Activities and Outlook for the Future

Richard Catherall EN-STI-RBS

**ISOLDE Technical Coordinator** 

ISOLDE workshop 5<sup>th</sup> – 7<sup>th</sup> December 2018



# The ISOLDE Facility

- Nano-lab
- Medicis operation
- New Frontends
- HT modulator
- Fast tape station
- Beam diagnostics
- Services
- Planning



### Nano Uranium Carbide Online at ISOLDE







| isotope                           | half life | yield [μC <sup>-1</sup> ] |
|-----------------------------------|-----------|---------------------------|
| <sup>8</sup> Li <sup>1</sup>      | 840 ms    | 2.8·10 <sup>7</sup>       |
| <sup>9</sup> Li <sup>1</sup>      | 178 ms    | 1.9·10 <sup>7</sup>       |
| <sup>25</sup> Na <sup>1,5</sup>   | 59.6 s    | 2.8·10 <sup>9</sup>       |
| <sup>26</sup> Na <sup>1,5</sup>   | 1.07 s    | 9.2·10 <sup>8</sup>       |
| <sup>30</sup> Na <sup>2</sup>     | 48 ms     | 1.4·10 <sup>5</sup>       |
| <sup>46</sup> K <sup>1,4</sup>    | 115 s     | 3.9-108                   |
| <sup>50</sup> K <sup>1,2,4</sup>  | 472 ms    | 8.6·10 <sup>4</sup>       |
| <sup>50</sup> Ca <sup>2</sup>     | 13.9 s    | 6.8·10 <sup>4</sup>       |
| <sup>41</sup> Sc <sup>1,5</sup>   | 596 ms    | 1.1·10 <sup>5</sup>       |
| <sup>68</sup> Cu <sup>2,7</sup>   | 30 s      | 9.6·10 <sup>8</sup>       |
| <sup>68m</sup> Cu <sup>1,7</sup>  | 3.8 min   | 3.4·10 <sup>8</sup>       |
| <sup>76</sup> Ga <sup>2</sup>     | 32.6 s    | 2.9·10 <sup>7</sup>       |
| <sup>81</sup> Ga <sup>2</sup>     | 1.22 s    | 1.1·10 <sup>6</sup>       |
| <sup>81m</sup> Rb <sup>2</sup>    | 30.3 min  | 2.2·10 <sup>7</sup>       |
| <sup>88</sup> Rb <sup>1,4</sup>   | 17.8 min  | 8.0·10 <sup>9</sup>       |
| <sup>93</sup> Rb <sup>1,4</sup>   | 5.84 s    | 2.6·10 <sup>8</sup>       |
| <sup>96</sup> Rb <sup>1,5</sup>   | 199 ms    | 1.5⋅10 <sup>7</sup>       |
| <sup>114</sup> Ag <sup>2,8</sup>  | 4.5 s     | 1.4·10 <sup>2</sup>       |
| <sup>116m</sup> Ag <sup>2,8</sup> | 8.2 s     | 9.0·10 <sup>2</sup>       |
| <sup>117</sup> Ag <sup>2,8</sup>  | 72.8 s    | 1.6·10 <sup>3</sup>       |
| <sup>118</sup> Ag <sup>2,8</sup>  | 3.7 s     | 6.2·10 <sup>4</sup>       |
| <sup>120</sup> Ag <sup>2,8</sup>  | 1.17 s    | 2.3·10 <sup>4</sup>       |
| <sup>122</sup> Ag <sup>2,8</sup>  | 0.52 s    | ≤1.3·10 <sup>3</sup>      |
| <sup>132</sup> ln <sup>1,2</sup>  | 0.20 s    | 1.7·10⁴                   |
| <sup>139</sup> Cs <sup>1,4</sup>  | 9.3 min   | 2.6·10 <sup>9</sup>       |
| <sup>142</sup> Cs <sup>1</sup>    | 1.68 s    | 1.1·10 <sup>9</sup>       |
| <sup>148</sup> Cs <sup>1,4</sup>  | 158 ms    | 1.7·10⁴                   |
| <sup>207</sup> Fr <sup>3</sup>    | 0.148 s   | 8.5·10 <sup>7</sup>       |
| <sup>230</sup> Fr <sup>1,4</sup>  | 0.596 s   | 7.1·10 <sup>5</sup>       |
| $A = 225^6$                       |           | 1.1·10 <sup>9</sup>       |

 $^{1}$ assessed through  $\beta$  detection with release curve integration

<sup>2</sup>assessed through γ detection

 $^{3}$ assessed with scintillator, assuming 50%  $\alpha$  detection efficiency

<sup>4</sup>beam composition assessed through γ spectroscopy

<sup>5</sup>beam composition assessed through half-life measurement

<sup>6</sup>faraday cup measurement

<sup>7</sup>resonant laser ionized

<sup>8</sup>extracted in its 2+ state

<sup>9</sup>assuming 100% branching into investigated γ transition

Courtesy of A. Gottberg



# Nano-UC<sub>2</sub>-C

- Nano uranium carbide risks
  - pyrophoric in air
  - Nano material handling
  - ATEX
  - Radiological risks















### Nanolab

- A laboratory dedicated to the safe handling of nano-actinide materials
- Confinement for pyrophoric uranium carbide (spontaneous ignition in air at room temperature)
- Radioactive storage area for ISOLDE and MEDICIS
- Benefiting from the available infrastructure for Class A type radioactive laboratories
- Civil engineering work to start in October 2019, completion April 2021







# Nano-lab Preliminary Schedule



- Launch of the design in October 2018
- Beginning of LS2 in November 2018 until January 2021
- Beginning of civil engineering works in September 2019
- Installation of the remaining infrastructure from November 2020 to the end of March 2021
- Commissioning of the extension April 2021

### **CERN- MEDICIS during LS2**

#### 2 months technical stop:

Set-up of radiochemistry laboratory, progress in laser ion source, Maintenance/Consolidation of beamline and remote handling

#### 10 months operation:

Facility restart with new parameters

Operation with imported isotope sources from ILL, Arronax, NMC-Riga

Distribution of purified isotopes to partner institutes







Non-medical projects (as approved by INTC/Research Board could be scheduled in the facility (eg isotope collections), provided it does not collide with the medical program



# New Frontends (10 &11) for ISOLDE

- Replacement of the 2 ISOLDE target stations GPS and HRS that have come to the end of their lifetime
- Improvement of new Frontends for better reliability and maintainability.
- Installation September 2019 onwards



### **Frontends: Actual situation**

**FE 6** was installed on **HRS** February 2010 (2010...2018 -> 9 years operation)

- Replacement of the Boris tube cabling
- replacement of FE3 (2001...2009 -> 9 years operation)
- 2011 increase of pressure to 10 bar on the shutter piston
- 2014 change of coupling table
- 2016 change of piston (with metallic segments and ball joint)

**FE 7** was installed on **GPS** February 2011 (2011...2018 -> 8 years operation)

- Replacement of the Boris tube cabling
- replacement of FE4 (2002...2010 -> 9 years operation)
- 2011 increase of pressure to 10 bar on the shutter piston
- 2014 change of coupling table
- 2016 change of piston (with metallic segments and ball joint)

FE 8 is installed on Off-Line 2 and FE 9 is used for MEDICIS FE 1, 2, 3, 4 are stored in ISR and FE 5 is used on Off-line 1





### 1. Actual situation





S. Marzari

### 2. Frontend 10 & 11 design

#### FE 10 & 11 main improvements:

- Rear deflectors and BI instrumentation (FC and wire grid) integrated on the same frame
- Thicker cable tray with Aluminium conductors
- Increase diameter of the shutter piston and all metal
- Consolidation of the electrode movement system (tested on MEDICIS)
- Integration of end switches on the shutter movement (tested on MEDICIS)
- Better stability of the frame





# Other target area activities

- Cameras
  - Revise and consolidate the current camera situation
    - Shield telescopic camera
- Safety requalification of gas storage tanks
  - Never been tested
  - Request by HSE to test or do visual inspection to continue to operate at > atm pressures
    - If not can only operate up to 1000 mbar Bar instead of 2800 mbar (absolute)
    - Volume of tanks 3m<sup>3</sup> and 5 m<sup>3</sup>
- Robot/Montrac maintenance and testing



### Fast Tape Station

### Commissioning underway:

• Release curves 134 Cs - identical measured values old and new tape station.

• Beta detectors improved for 2x10<sup>6</sup> counts/seconds rates

• Short lived isotope ( $^{21}$ Mg,  $T_{1/2}$  =122 ms) yield measured for the

first time!

 Mechanical controls tested

Timing sequence tested

- Beam instruments installed and operational
- RIB commissioning continuing
- Installation in CA0 planned for 2019

Delay [s]







Fast tape station to central beam line 🦠

- Move from testing position at LA2 beam line to final location in the central beam line
- Replaces 42 years old tape station
- Will be the main instrumentation for the target characterisation and yield measurements
  - the "eyes and ears" of ISOLDE operations





### HT Modulator

- A second HT modulator (for the GPS) is planned to be installed during LS2
- However, the negative power supply will only be installed during the 2021-2022 YETS
  - No negative beams available until 2022.

| HT (kV) | 1E13ppp | 2E13ppp | ЗЕ13ррр |
|---------|---------|---------|---------|
| 30      | 350     | 370     | 370     |
| 40      | 400     | 480     | 550     |
| 50      | 530     | 650     | 750     |
| 55      | -       | -       | 870     |
| 60      | 620     | 780     | 980     |



Recovery time ( $\mu$ s) of HT (+/-0.6V) with protons on convertor

# Beam diagnostics

- BE-BI group to procure 20 FC/scanner units for low energy beam lines by Q1 2019
  - Need to prioritize which scanners are to be exchanged

|          | Total | REX | HIE | Low Energy |
|----------|-------|-----|-----|------------|
| FC       | 64    | 8   | 23  | 32         |
| Scanners | 46    | 0   | 18  | 27         |

- Also new scanner units for the separators are under procurement
- To be installed in Q2 Q4 in 2019



New HRS scanner/FC design





# GPS Scanner: Specification Changes



More combined distance

+ Covers different mass ranges



More overlap between two needles

+ Redundancy in case of failure of one needle, more versatile instrument



Maximum useful overlap is 147 mm

with central beam = 21Ne

Max. useful range of combined scanners 300 mm (mass range ± 10%)

No need for beam instrumentation at extreme edges when using mass ranges ±15%

T. Giles

|         | Combined range | Overlap |
|---------|----------------|---------|
| Current | 300 mm         | 60 mm   |
| New     | 350 mm         | 150 mm  |



# ISOLDE Hall: Separator upgrades

- Mechanical slits on HRS
  - Revise the mechanics (EN-STI-RBS)
- Replacement of flexible compressed air lines
  - 5 yearly preventive maintenance
- Installation of Fast Tape Station in CAO beam line
- Target and ion source gas system to be refurbished
  - Mechanical parts and leak reparation
- Beam gate controls in ICR
- Beam diagnostics
- N2 supply line for experiments
- CRIS platform integration and installation?
- Installation of second HT modulator



### Vacuum

- Maintenance of turbopumps and replacement of oil of primary pumps
- Consolidation of turbopumps (replacement of 6 TMPs)
- Repair leak in tank 1 of exhaust system.
- Replace Profibus full range gauges by compact full range gauges in experimental hall
- Replace REX roughing pump
- Consolidation of compressed air system and installation of reservoirs to better protect the vacuum system against power cuts.
- Support FE installation
- Interventions planned for May/June 2020



### Water

| Machine | Circuits                                                  | Stop       | Start    |
|---------|-----------------------------------------------------------|------------|----------|
| ISOLDE  | Cryo-primary                                              | 18/12/2018 | 01/04/20 |
|         | BTY magnet cooling                                        | 18/12/2018 | 26/02/21 |
|         | Hall (incl. Separators, REXEBIS and REXTRAP)              | 18/12/2018 | 28/02/19 |
|         | HIE-ISOLDE (HEBT lines + triplets REX + RF B. 199         | 18/12/2018 | 01/05/20 |
|         | Target cooling                                            | 10/12/18   | 31/07/20 |
|         | Mixed water cooling (Ampli RF bldg.<br>170 + REX cavities | 18/12/2018 | 31/07/19 |



# Electricity

- Cut of 18kV power to ISOLDE
  - 3<sup>rd</sup> April 2019
  - UIAC-19701
  - Groupe Trane UHF1-0101
  - EWD15\*80 (Armoire CV local 197/R-401
  - EBD12\*80 : Hvac bâtiment 508/R-006
  - Tableaux machines: ERD11\*80, EXD32\*80, ERD5\*80 ERD2\*80, EXD12\*80, EXD16\*80
  - Armoire UIA0-00045 CLIM REX ISOLDE
  - Ventilation hall 170 local 170/3-401 (Passerelle sur bâtiment 197)
  - UIAC-00094 Bâtiment 179/1-023
- Punctual stops throughout 2019 with prior notice

Stops already announced: 19/12/2018 06:00 to 06:30 Weekend du 20/01/2019 AUG tests PS/Booster



### Ventilation and compressed air

- Ventilation
  - 4 weeks stop of ventilation systems throughout ISOLDE
- Cooling maintenance
  - 4 weeks during the stop of the cryo-compressor
  - Proposed dates January and February 2019
- Compressed air will be operational throughout LS2



Planning





### ...and Outlook for the Future





### ISOLDE in the EPPS



### The **EPIC** project:

### **Exploiting the Potential of ISOLDE at CERN**

the ISOLDE Collaboration input to the European Strategy for Particle Physics update

#### Gerda Neyens, ISOLDE Collaboration Spokesperson

Richard Catherall, ISOLDE Technical Coordinator
Bertram Blank, Chair of the ISOLDE Collaboration
Karsten Riisager, Chair of the ISOLDE and n-TOF (INTC) program committee

With many thanks to Klaus Blaum, Yuri Litvinov, Ronald Garcia Ruiz, Kieran Flanagan, Manfred Grieser, Erwin Siesling, Tim Giles and many others...

### Present ISOLDE beams





### The ISOLDE users community





Non-European 15 16 29 ■ United States ■ South Africa ■ Russia ■ India Canada Japan ■ Brazil ■ Bangladesh china ■ Chile Australia Israel ■ South Korea ■ Costa Rica Algeria Iran

Since post-accelerated beams became available: continuous growing users community!

#### **ISOLDE USERS:**

- ➤ In pre-HIE-ISOLDE era: 500-600
- Today: 1314!
  - ✓ From 43 countries
  - √ From > 200 institutions
  - ✓ From all around the world

# 3 objectives



- Profit from increased driver beam energy and intensity (2 GeV, 4 μA), thanks to CERN's investment in the LHC Injector Upgrade (LIU) and improve the exploitation of the existing infrastructure
- Have multiple simultaneous beams for users
- A new storage ring for short-lived, light and heavy ions



# Profit from increased driver beam energy (2 GeV) and intensity (4 $\mu$ A)

- ➤ Take advantage of CERN's LHC Injector Upgrade (LIU): higher proton intensities from LINAC4 and Booster energy increase from 1.4 GeV to 2 GeV
- ➤ GAIN FOR ISOLDE: **Higher radioactive beam intensities** for fragmentation and spallation products (gain between factor of 2 and more than 10 in intensity)
- > NEED INVESTMENTS, in order for ISOLDE TO RECEIVE THESE BEAMS:
  - New beam dumps to cope with higher power
  - New transfer line from booster to ISOLDE











### And improve the exploitation of the existing infrastructure

➤ HIE-ISOLDE post-accelerator design goal: beams up to 10 MeV/u, for light and heavy beams

NOW: max 9.4 MeV/u for light beams max 7.4 MeV/u for heavy beams



#### **SOLUTIONS TO REACH FULL ENERGY POTENTIAL:**

- √ Have all cavities working after LS2!
- ✓ FINALIZE the HIE-ISOLDE energy upgrade:

post-accelerated beams in the full (low) energy range from 0.3 and 2.8 MeV/u (most important for astrophysics experiments) and up to 10 MeV/u

METHOD: upgrade of the (20 years old!) REX-part of the HIE-ISOLDE LINAC



#### Have multiple simultaneous and better quality beams

➤ GOAL: serve the ever-growing ISOLDE users community, who pursue a

very diverse research program

in nuclear physics,

fundamental interaction studies,

atomic physics

nuclear astrophysics

material sciences

biochemical/ medical research

#### > METHOD:

1. Two new additional target stations

Preliminary design: Tim Giles, presented at the EMIS 2018 Conference, CERN

1992 1987 beamline witchvard 3 Isolde Target witchyard 2 New Experimental Hall 2030 Target-station 3 Switchyard 1b Target-station 4 HRS



#### Have multiple simultaneous better quality beams

- > METHOD:
- 1. Two new additional target stations
- 2. A new high-resolution mass separator

(state-of-the-art) to deliver purer beams (very important for HIE-ISOLDE operations)

→ currently, some RIB's cannot be efficiently accelerated due to contamination that is too high



Preliminary design: Tim Giles, presented at the EMIS 2018 Conference, CERN
See Poster 11 at this workshop



### A new compact storage ring for light and heavy ions

- Stored radioactive beams have many advantages:
- Can be used multiple times in an in-ring detector (luminosity increase)
- Can be cooled to deliver excellent quality beams to external experiments for high-precision studies

#### > Research areas:

nuclear ground-state properties, reaction studies of astrophysical relevance, investigations with highly-charged ions studies with pure isomeric beams (e.g. fundamental constants)





#### A new compact storage ring for light and heavy ions



#### **Preliminary design:**

Manfred Grieser, MPI-K Heidelberg

#### **Preliminary integration in ISOLDE:**

**Erwin Siesling** 



Possible ISR integration



# Impact on Physics



- Most of HIE-ISOLDE and many ISOLDE proposals suffer from low intensity
   unnecessary prolongation of beam times.
- New and more exotic species will be available with the increase of intensities: from x2-x5 for fragmentation, x1 − x2 for fission, x6-x10 for spallation.
- Exploit the full range of energies of HIE-ISOLDE by implementing Phase 3 of the project
- Several HIE-ISOLDE experiments cannot reach full intensity due to contamination in the ISOLDE beam → need better beam purification (new HRS mass separator, ...)
- New target stations will allow operation of low-energy and high-energy experiments, more than doubling the available beam time.
- Multi usage and cooled beams from the storage ring

# End of Run 2 party





- Building 508 at 16:30 tomorrow
- You are all invited