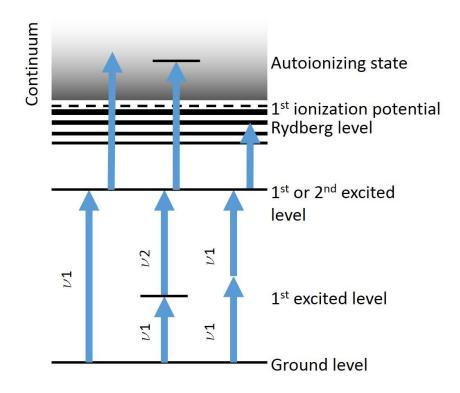


Contents

- The ISOLDE RILIS.
 - The team in 2018.
- Laser systems:
 - New lasers.
 - Laser failures.
- On-line operations.
- Scheme development.
- RILIS spectroscopy experiments.
- New laser laboratories.
 - Offline 2.
 - MEDICIS.
- Towards two-photon spectroscopy.
- Outlook for LS2.



The ISOLDE RILIS

- Utilizes resonance ionization to ionize atoms of interest inside hot cavity.
- Each element has a unique 'fingerpint'.
- High efficiency and selectivity.
 - Isotope selectivity in combination with mass separator.
 - Isomer selectivity in exceptional cases.

RILIS team in 2018

Valentin Fedosseev Section leader EN-STI-LP

Bruce Marsh Staff member EN-STI-LP

Camilo Granados CERN fellow since Apr. 2017

Shane Gary Wilkins CERN fellow since Oct. 2017

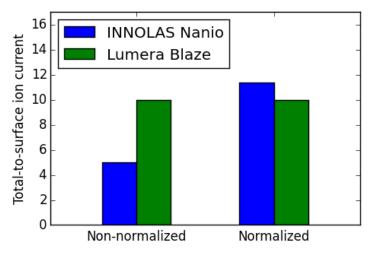
Support from PNPI: Dima Fedorov, Pavel Molkanov, Maxim Seliverstov

Rizwan Ahmed, Associate (NCP, Pakistan) since April 2018

Eduardo Granados (new Staff member STI-LP)

InnoLas Nanio

- Looking for alternative Ti:Sa pump lasers.
 - Continued issues with current lasers and chillers.
- Tested a loan laser from InnoLas.
- Model: 532-18-Y
- Power: 18 W.
- TEM $_{00}$ beam, M 2 < 1.3.
- <40-ns pulse width at 10 kHz.
- Modular design.
- 'In-field' maintenance/repair.



InnoLas Nanio

- Z-cavity Ti:Sa pumping:
- Better per-watt performance compared to Photonics Industries DM6o.
- Non-resonant ionization:
- Similar performance compared to Blaze (when power normalized).
- Confirms excellent beam quality.
- System is versatile.
- Loan laser system purchased as part of combined deal with MEDICIS pump laser acquisition.

- Photonics DM-60:
- PX3 self-immolated in Nov 17 sent to Nexlase for post mortem.
- Replacement (PX4) arrived May
 18.
- PX4 broke after Q-switch malfunction in Jun 18 – occurred during IDS Cu run.
- Sent for repair and received system back in Aug 18.
- Not tested due to missing key and interlock connector.

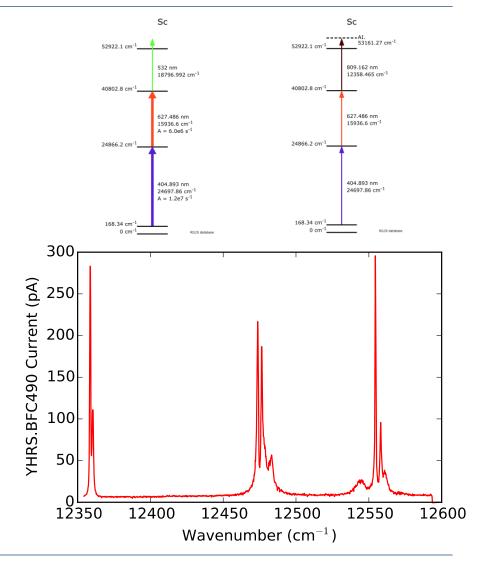
- Edgewave INNOSLAB:
- Installed in **2017**.
- 30% loss in power measured in Apr
 18 hotspot inside resonator killed
 Nd:YAG crystal.
- System sent for repair and returned in Jul 18.
- Total failure in Sep 18 during ISS Hg run.
- Replaced with old Edgewave system.
- System at company no news on cause of failure or return date.

- INNOLAS Nanio:
- Loan system (Nanio 1) laser cavity flooded **Jun 18**.
- Replacement system (Nanio 2) arrived a week later.
- Nanio 2 failed Oct 18 due to some electrical failure.
- System sent for repair.

- INNOLAS Nanio:
- Loan system (Nanio 1) laser cavity flooded **Jun 18**.
- Replacement system (Nanio 2) arrived a week later.
- Nanio 2 failed Oct 18 due to some electrical failure.
- System sent for repair.

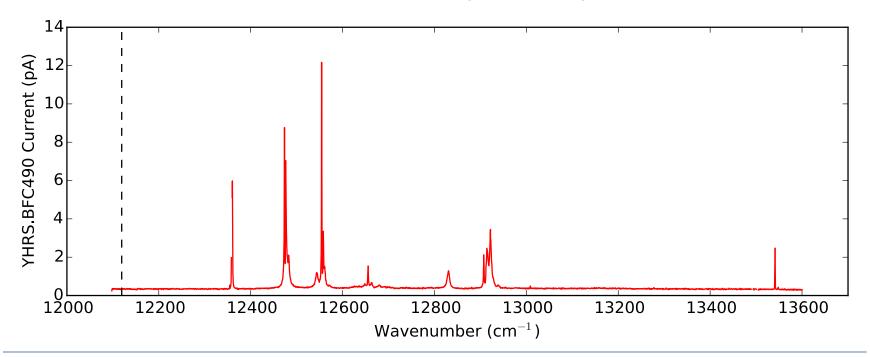
2018 On-line period statistics

- 14 elements:
 - In, Sc, Mg, Cu, Dy, Bi, Sn, Be, Mn, Mg, Sb, Hg, Tl, Ac, Al.
- 21 separate on-line runs (not including TISD).
- 3 elements for TISD over 2 days:
 - Ga, In, Zn.
- >50 % of ISOLDE beams in 2018.



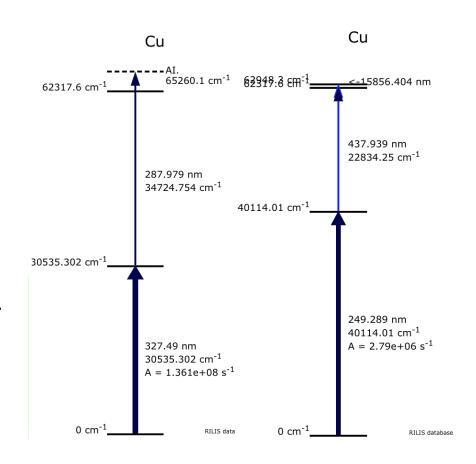
Sc scheme development

- First Sc runs in 2018 for ISOLTRAP and COLLAPS.
- Compare 2 previously used schemes.
 - Non-resonant final step vs transition to auto-ionizing state (AI).
- Al scheme 3x more efficient.
- Found a slightly more efficient AI at 12554.5 cm⁻¹.
- Search stopped after target vent.



Sc scheme development

- Before COLLAPS beamtime:
- More time to search for Als.
- Scanned from IP using grating Ti:Sa.
- Found 1 new AI not as efficient as previously used transition.

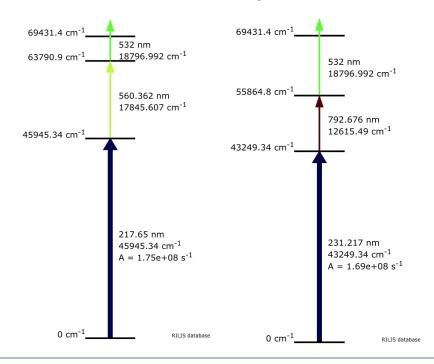


Ti:Sa-only Cu scheme

- Usual scheme uses 2 dye lasers.
- 2nd step requires high-power UV step.
 - Requires frequent maintenance.
 - Dye changes, cleaning of optics after UV generation.
- TRILIS scheme avoids high-power UV step and dye lasers altogether.
 - J. Lassen (private communication).
- Ti:Sa scheme 2.5x efficient.
- Used for IDS experiment until pump laser failure forced a switch back to the dye scheme.

Ti:Sa-only Sb scheme

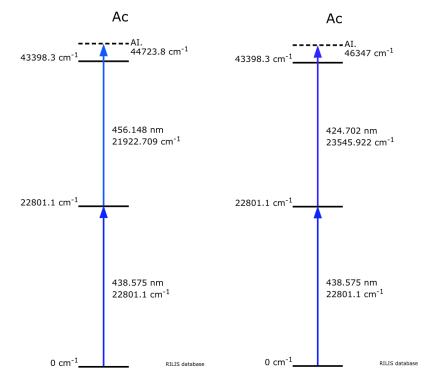
- Original scheme developed a long time ago.
- Non-resonant ionization forces excited atoms far above continuum.
- Tested TRILIS scheme.
- ~2x as efficient as dye scheme.
- Ti:Sa scheme used in successful COLLAPS beamtime.


Spectroscopy Spectroscopy

Volume 128, 1 February 2017, Pages 36-44

Laser resonance ionization spectroscopy of antimony

R. Li ^a $\stackrel{\circ}{\sim}$ \boxtimes , J. Lassen ^{a, b, c}, J. Ruczkowski ^d, A. Teigelhöfer ^{a, b}, P. Bricault ^a



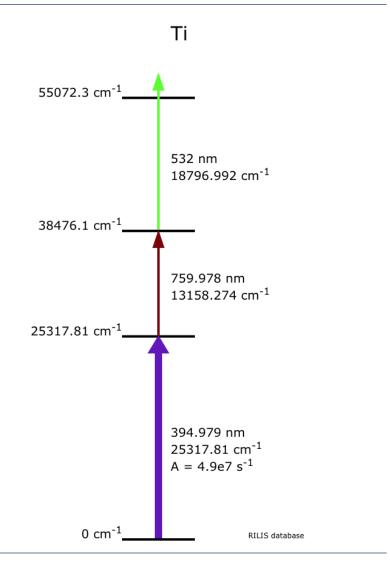
First laser-ionized Ac at ISOLDE

- New RILIS element at ISOLDE.
- Ac experiments during last week of protons.
- Tested two schemes transitions to different Als.
 - Hot-cavity scheme (TRIUMF).
 - Gas-cell/jet scheme (LISOL).
- Schemes equally efficient.

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

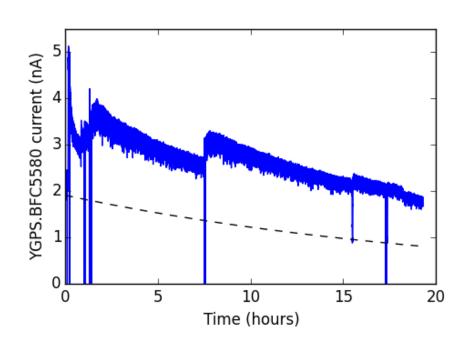
R. Ferrer A. A. Barzakh [...] A. Zadvornaya

Nature Communications &, Article number: 14520 (2017) | Download Citation &



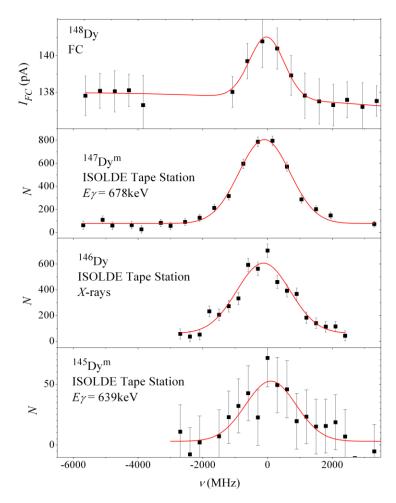
Ti scheme efficiency

- Request for Ti RILIS efficiency measurement for 44Ti run.
- Two calibrated mass markers (560 nAh, 5600 nAh).
- Efficiency measurement from small Ti sample: <**6.4** %.
- Line failure during big sample measurement – current return for mass markers through line.
- Big mass marker could have released Ti through heating small marker.
- Plan: surface ionization efficiency measurement at Offline 1.
- Use known laser/surface ratio at line temperature to show RILIS efficiency.



Ti scheme efficiency

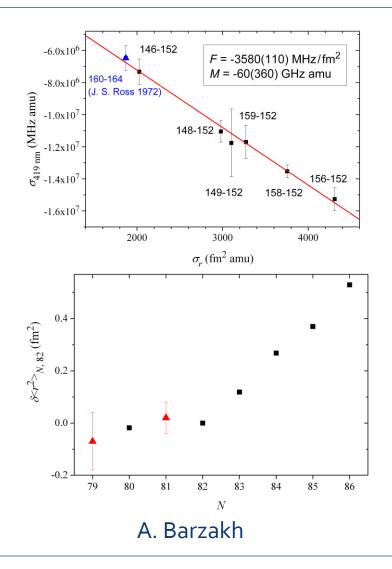
- Request for Ti RILIS efficiency measurement for 44Ti run.
- Two calibrated mass markers (560 nAh, 5600 nAh).
- Efficiency measurement from small Ti sample: <6.4 %.
- Line failure during big sample measurement – current return for mass markers through line.
- Big mass marker could have released Ti through heating small marker.
- Plan: surface ionization efficiency measurement at Offline 1.
- Use known laser/surface ratio to estimate RILIS efficiency.



In-source spectroscopy of Dy and Bi

- Continuation of IS608 for Bi (Z=83).
- First in-source measurements of Dy (Z=66).
- First on-line use of narrowband intracavity-doubled grating Ti:Sa.
- Motivation: to measure changes in mean-square charge radii below N=82.
- Combination of Faraday cup/tape station scans.
- Results will be published in EMIS proceedings by K. Chrysalidis.

A. Barzakh



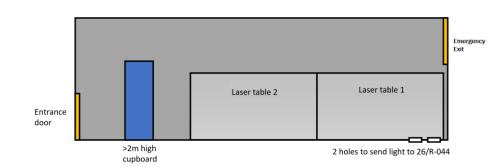
In-source spectroscopy of Dy and Bi

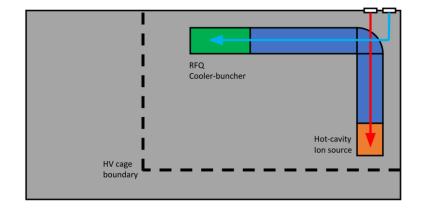
- Continuation of IS608 for Bi (Z=83).
- First in-source measurements of Dy (Z=66).
- First on-line use of narrowband intracavity-doubled grating Ti:Sa.
- Motivation: to measure changes in mean-square charge radii below N=82.
- Combination of Faraday cup/tape station scans.
- Figures from A. Barzakh.
- Results will be published in EMIS proceedings by K. Chrysalidis.

Lasers for GANDALPH

- Collaboration with GANDALPH for electron photodetachment of negative ions.
- Laser light sent to GLM for I, At, Cl experiments.
- See talk by D. Leimbach (directly after this talk!).

Offline 2

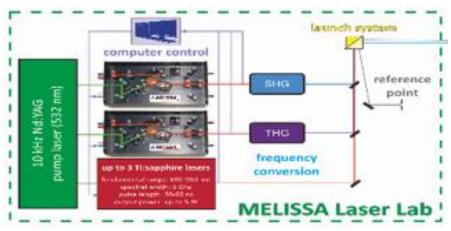

- New offline lab for research and development.
 - Home for RILIS developments during LS2.


Completed:

- Laser interlock design and installation (BE-ICS).
- Laser tables installed.
- Optical table layout designed.

To be completed:

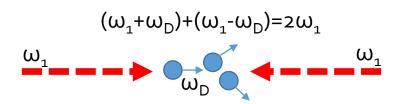
- Air-conditioning and water cooling circuit installation (EN-CV) -Ongoing.
- Move and install spare RILIS hardware – Jan-Feb 19.

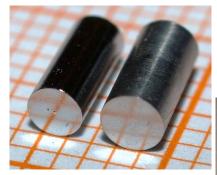


MELISSA at MEDICIS

- Completed:
- AC installation.
- Laser tables moved in.
- To be completed:
- Install lasers Jan 19.
 - 2x InnoLas Nanio arrived and tested at CERN.
 - Ti:Sa cavities assembling.
- Laser interlock installation Jan 19.
- Beam path to MEDICIS Jan 19.
- Ready for commissioning in Jan/Feb 19 – Sm.
- Laser operation for **Tb Mar 19**.

V. Gadelshin and K. Dockx

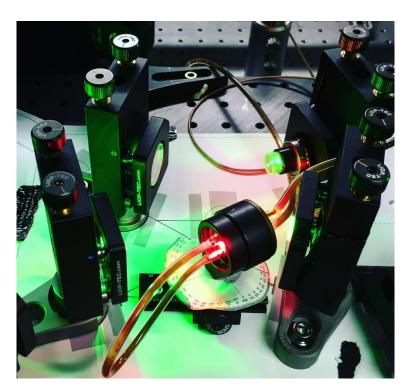




Two-photon in-source spectroscopy

- Doppler broadening limits applicability of in-source spectroscopy to heavy elements.
- Doppler-free two-photon spectroscopy offers route to high-resolution in-source spectroscopy.
- Developments required:
 - Narrowband pulsed laser (< 100 MHz).
 - Reflective surface inside ion source.
 - Examples of Mo surface on right.

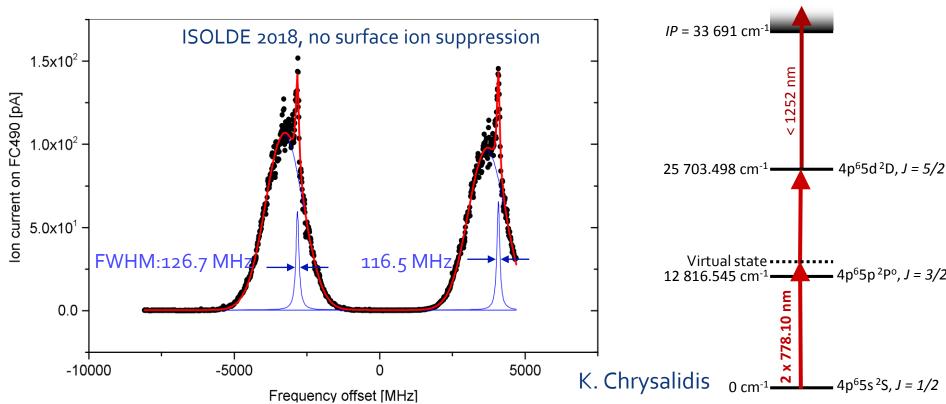
K. Chrysalidis



Injection-seeded Ti:Sa

- Bow-tie cavity geometry designed and 'printed' onto breadboard.
 - Design made by D. Studer (Mainz).
- Compatible with current Z-cavity Ti:Sa mirrors.
- Seed laser light provided by CRIS (SolsTiS/Matisse) through 50-m fibre.
- Piezo-actuated mirror locks cavity to seed.
- Commissioned and operational.
- 2nd system built and installed in CRIS lab.

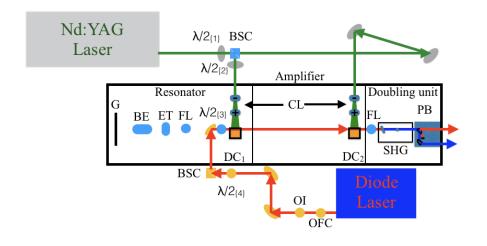
K. Chrysalidis



First measurements at ISOLDE

⁸⁷Rb, I=3/2

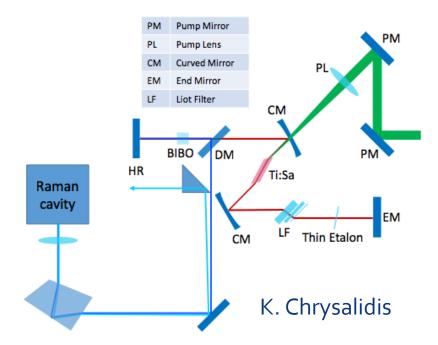
- Measurement of 5s-5d transition in 87Rb.
- Results will be published in EMIS proceedings by K. Chrysalidis.
- Optimization of mirror geometry during LS2.

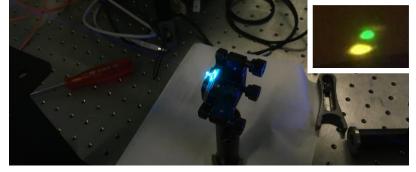


Pulsed-dye amplifier

- Complementary system to injection-seeded Ti:Sa.
- Seed laser light provided by continuous-wave dye laser.
- Narrowband amplified light produced.
- Characterization of system through offline spectroscopy in reference cell in coming months (PISA).

C. Granados



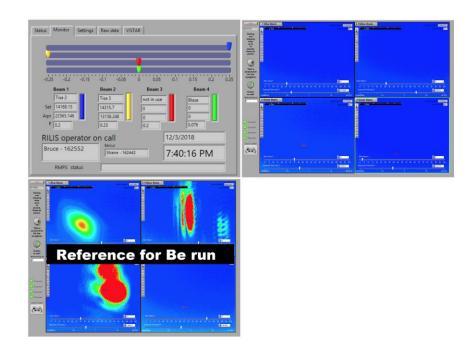


Solid-state Raman laser for RILIS

- Attempt to bridge gap between blue TiSa and dye range.
- Collaboration with E. Granados (EN-STI-LP), R. Mildren (Macquarie University).
- Use blue Ti:Sa to pump diamond Raman laser.
- Promising results already obtained.
- Additional funding under discussion with Knowledge Transfer.
 - Dedicated student(s) during
 LS2.

RILIS hardware consolidation

- Completed:
- Dye pump laser replacement.
- New Ti:Sa cavities.
- Alternative Ti:Sa pump laser.
- High-resolution laser systems.
- Planned:
- Spare Blaze laser.
- Test/purchase replacement Blaze laser.
- Test picosecond laser for molecular breakup.
- Replace dye lasers.



Dual-separator RILIS operation

- Upgraded laser beam observation and stabilization system.
 - Allow beams from both separators to be stabilized.
- Reduced setup time and faster switching between elements and separators.
- Re-arrange optical layout with compact telescopes and additional optics/optomechanics to facilitate dual-separator operation.

Summary

- 14 elements for 21 separate on-line runs + TISD week, >50% of ISOLDE beams in 2018.
- Scheme development/testing on Sc, Cu, Sb.
- Ti RILIS efficiency: <6.4 %.
- Ac established as a new RILIS element.
- First 2-photon in-source measurements at ISOLDE.
- Development and commissioning of high-resolution systems.
- Progress on constructing and equipping new lasers labs at Offline 2 and MEDICIS.
- Outlook for LS2.

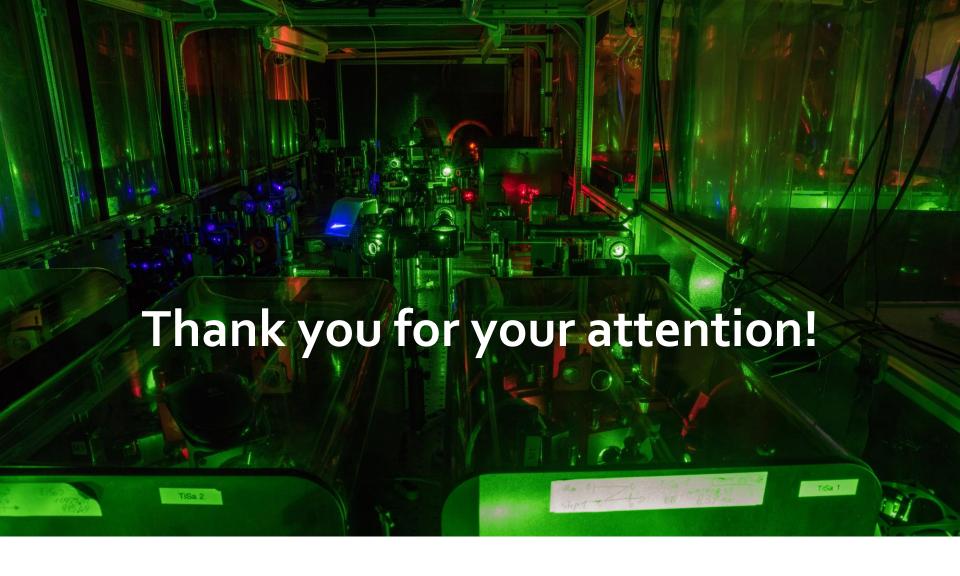
Acknowledgements

The RILIS team

Dima, Maxim, Pavel at PNPI

In-source spectroscopy collaboration

ISOLDE technical teams:


Target group, operators, workshop technicians

CRIS, COLLAPS

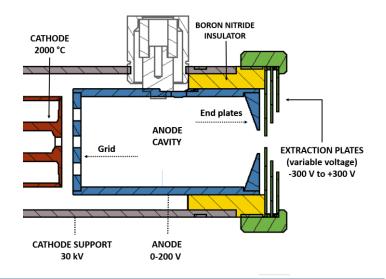
LARISSA group, Mainz

Ion source developments

- VADLIS:
- Variable extraction voltage as standard for on-line operation.
 - 3x increase in RILIS efficiency.
- Further optimization for RILISmode operation.
- LIST:
- Compatibility with HRS and GPS.
- ToF-LIS:
 - Fast beam gate at time focus of laser ion bunches.
 - Improvement in selectivity.

Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with
Materials and Atoms

Volume 431, 15 September 2018, Pages 59-66


Enhancing the extraction of laser-ionized beams from an arc discharge ion source volume

Y. Martinez Palenzuela ^{a, c} $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, B.A. Marsh ^a, J. Ballof ^{a, b}, R. Catherall ^a, K. Chrysalidis ^{a, d}, T.E. Cocolios ^c, B. Crepieux ^a, T. Day Goodacre ^{a, e, f}, V.N. Fedosseev ^a, M.H. Huyse ^c, P.B. Larmonier ^{a, g}, J.P. Ramos ^a, S. Rothe ^a, J.D.A. Smith ^h, T. Stora ^a, P. Van Duppen ^c, S. Wilkins ^a

⊞ Show more

https://doi.org/10.1016/j.nimb.2018.06.006

Get rights and content

High-resolution in-source techniques

- 2-photon:
- Optimization of mirror geometry.
- PI-LIST:
- Isomer selectivity for
- 2-photon ionization for new RILIS elements.
 - Phosphorus,

Molecular breakup

- Could provide access to atomic form of refractory elements.
- Extract as volatile element,
 breakup and then ionize element.
 - VADIS ionization of molecule not selective.
- Breakup requires multiple photons.
- Need very high peak powers for this to be efficient.
- Systems to test:
- Lumera Blaze o.2 MW
- InnoLas FEMTO 4 30 MW.
- Edgewave FX >800 MW.

