Spectroscopy of muonic atoms

Laser spectroscopy of light muonic atoms

We measured 10 2S-2P transitions in μp , μd , $\mu^3 He^+$, $\mu^4 He^+$

Theoretical predictions: QED + Nuclear structure

p, d, ³He, ⁴He charge radii

Extracting the proton radius from µp

Measure 2S-2P splitting (20 ppm) and compare with theory → proton radius

$$\Delta E_{2P-2S}^{\text{th}} = 206.0336(15) - \frac{5.2275(10)}{p} r_{p}^{2} + 0.0332(20) \text{ [meV]}$$

$$\Delta E_{\text{size}} = \frac{2\pi (Z\alpha)}{3} \, r_{\text{p}}^{2} \, |\Psi_{nl}(0)|^{2}$$
$$= \frac{2(Z\alpha)^{4}}{3n^{3}} m_{r}^{3} \, r_{\text{p}}^{2} \, \delta_{l0}$$

$$m_{\mu} \approx 200 m_e$$

$$r_{\rm p}^2 = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{{\rm Q}^2=0}$$

Principle of the μ p 2S-2P experiment

Produce many μ - at keV energy

Form μ p by stopping μ - in 1 mbar H₂ gas

Fire laser to induce the 2S-2P transition

Measure the 2 keV X-rays from 2P-1S decay

The setup at the Paul Scherrer Institute

The first µp resonance (2010)

Discrepancy:
$$5.0\,\sigma \,\leftrightarrow\, 75~\mathrm{GHz}\,\leftrightarrow\, \delta\nu/\nu = 1.5\times 10^{-3}$$

Pohl et al., Nature 466, 213 (2010)

Aldo Antognini

Three ways to the proton radius

Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016)

The rp puzzle has triggered many activities

µp experiment

μp theory

H experiments

BSM physics

e-p scattering

Rarely criticised since:

 $m_{\mu} \approx 200 m_e$

sensitive to the radius

$$\sim m^3 R_p^2$$

insensitive to systematical effects

$$\sim 1/m$$

µp experiment

μp theory

QED

Pachucki, Borie, Eides, Karschenboim, Jentschura, Martynenko, Indelicato Pineda, Peset, Faustov...

many more

H experiments

Two-photon exchange

BSM physics

e-p scattering

Can be computed with dispersion th. + data

But subtraction term is needed ⇒ modelling of proton

Pachucki, Carlson, Birse, McGovern, Pineda, Gorchtein, Pascalutsa, Vanderhaeghen, Alarcon, Miller, Paz, Hill...

μp experiment

μp theory

H experiments

BSM physics

e-p scattering

Technicalities on TPE in µp

Kinematics: 2 loop variables q^2 and v=(pq)/M

$$\mathcal{M} = e^4 \int \frac{d^4 q}{(2\pi)^4} \frac{1}{q^4} \bar{u}(k) \left[\gamma^{\nu} \frac{1}{\not{k} - \not{q} - m_l + i\epsilon} \gamma^{\mu} + \gamma^{\mu} \frac{1}{\not{k} + \not{q} - m_l + i\epsilon} \gamma^{\nu} \right] u(k) T_{\mu\nu}$$

Forward virtual Compton amplitude

$$T^{\mu\nu} = \frac{i}{8\pi M} \int d^4x e^{iqx} \langle p|T j^{\mu}(x)j^{\nu}(0)|p\rangle$$

$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu, Q^2) + \frac{1}{M^2} (p - \frac{pq}{q^2}q)^{\mu} (p - \frac{pq}{q^2}q)^{\nu} T_2(\nu, Q^2)$$

Lamb shift (nS-nP)

$$\Delta E = -\frac{\alpha^2}{2\pi m_l M_d} \phi_n^2(0) \int d^4q \frac{(q^2 + 2\nu^2) T_1(\nu, q^2) - (q^2 - \nu^2) T_2(\nu, q^2)}{q^4 [(q^2 / 2m_l)^2 - \nu^2]}$$

Slide stolen from Gorchtein

Technicalities on TPE in µp

T₁, T₂ - the imaginary parts known (Optical theorem)

$$\operatorname{Im} T_1(\nu,Q^2) = \frac{1}{4M} F_1(\nu,Q^2)$$
 Inelastic structure functions = data (real and virtual photoabsorption, FF)

Real parts - from forward dispersion relation

$$F_1(
u o \infty, q^2) \sim
u^{1+\epsilon}$$
 - subtraction needed $F_2(
u o \infty, q^2) \sim
u^{\epsilon}$ - no subtraction

$$\operatorname{Re}T_{1}(\nu, Q^{2}) = \bar{T}_{1}(0, Q^{2}) + T_{1}^{pole}(\nu, Q^{2}) + \frac{\nu^{2}}{2\pi M} \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu(\nu'^{2} - \nu^{2})} F_{1}(\nu', Q^{2})$$

$$\operatorname{Re}T_{2}(\nu, Q^{2}) = T_{2}^{pole}(\nu, Q^{2}) + \frac{1}{2\pi} \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}} F_{2}(\nu', Q^{2})$$

Slide stolen from Gorchtein

μp experiment

μp theory

H experiments

BSM physics

e-p scattering

Uncertainties and discrepancy

0.3	meV	Discrepancy
	meV:	TPE uncertainty (conservatively, Hill and Paz) Polarisability-contr. uncertainty (Pascalusa) TPE uncertainty (McGovern, our choice)
0.0015	meV:	QED uncertainties

Pachucki, Carlson, Birse, McGovern, Pineda, Peset, Gorchtein, Pascalutsa, Vanderhaeghen, Tomalak, Martynenko, Alarcon, Miller, Paz, Hill...

0.0023

meV:

μp experiment

μp theory

H experiments

BSM physics

e-p scattering

 \cdot Two unknown: R_{∞} , R_{p}

Two groups of measurements:

- 1S-2S: 10⁻¹⁵ rel. accuracy

- others: <10⁻¹³ rel. accuracy and more prone to systematics

1**S**

µp experiment

μp theory

H experiments

BSM physics

e-p scattering

 4σ only when averaging

μp experiment

μp theory

H experiments

Large sensitivity to rp ⇒ requires low-precision meas. Large insensitivity to systematics But difficult to see the signal

Low sensitivity to rp ⇒ requires high-precision But "easy" to see the signal

BSM physics

e-p scattering

Explain the discrepancy by shifting the						
$\mu p (2S-2P)$	100σ	75 GHz	4Γ			
H (1S-2S)	$4'000\sigma$	$40~\mathrm{kHz}$	40Γ			
H (2S-4P)	$< 1.5 \sigma$	9 kHz	$7 \cdot 10^{-4} \Gamma$			
H (2S-2P)	$< 1.5 \sigma$	5 kHz	$7 \cdot 10^{-4} \Gamma$			

exp accuracy

line width

Isolde Workshop, CERN

Aldo Antognini

µp experiment

μp theory

H experiments

BSM physics

e-p scattering

Some open regions for MeV force carrier still resist

Martens & Ralston (2016), Liu, McKeen & Miller (2016), Batell et. al (2016)

- Tuning (e.g. vector vs axial-vector)
- Preferential coupling to μ and p
- No UV completion and no full SM gauge inv.

μp experiment

μp theory

H experiments

BSM physics

e-p scattering

$$\left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Ros.}} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}} \frac{1}{(1+\tau)} \left(\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right)$$

µp experiment

μp theory

H experiments

BSM physics

· e-p scattering

Extrapolation:

- which functionality
- analyticity
- z-expansion vs Q²-expansion
- coefficients with perturbative scaling
- how many degrees of freedom (under-fitting, over-fitting)
- which Q² range
- normalisations
- physics-motivated model (VMD, chPT, dispersion, large tails, higher-moments
- statistical tests, χ^2 , regressions, bias
- TPE corrections

The proton charge radii

The proton charge radii

Higinbotham et al.,, arXiv: 1510.01293

Griffioen et al., arXiv:1509.06676

Lorenz et al., PRD 91, 014023 (2015)

Horbatsch, Hessels, Pineda, arXiv:1610.09760

Bernauer, Distler, arXiv:1606.02159 Sick, Trautmann, arXiv:1701.01809 Lee, Arrington, Hill, arXiv:1505.01489 Hoferichter et al., EPJA 52, 331 (2016) Alarcon, Weiss, arXiv:1710.06430

The race to the proton radius solution

Aldo Antognini

23

The race to the proton radius solution

Atomic spectroscopy

- · H(2S-2P) (Toronto)
- · H(1S-3S) (LKB, MPQ)
- · H(2S-4P) (MPQ)
- H₂, H₂+, HD, HD+,HT (LKB, LaserLaB, ETH)
- He+ (LaserLaB, MPQ)
- He (LaserLab, MPQ)
- · Li+ (Mainz)
- Muonium (ETH, PSI)
- Positronium (ETH, UC London)
- Rydberg states in H-like ions (NIST)
- Rydberg states in optical lattice (Ann Arbor)

- · µd
- · μ³He, μ⁴He
- · μp HFS
- μLi ?

Scattering

- e-p, PRad (JLAB)
- e-p, ISR & MAGIX (Mainz)
- μ-p, e-p, MUSE (PSI, UniBasel)
- μ-p, COMPASS (CERN)
- e-p, ProRad (Orsay)
- Tohoku, (Sendai)

The proton charge radius from muonic deuterium

$$H/D \text{ shift:} \quad r_{\rm d}^2 - r_{\rm p}^2 = 3.820\,07(65) \text{ fm}^2$$
 $\mu d: \quad r_{\rm d} = 2.1256(8) \text{ fm}$
 $\Rightarrow \quad r_{\rm p} = 0.8356(20) \text{ fm}$

Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016) Small value of the proton radius is confirmed from μ d

Aldo Antognini

New 2S-4P measurement in H (MPQ, 2017)

- Produce atomic H beam at cryogenic temperature
- Populate the 2S state using two-photons excitation
- Excite the 2S-4P transition
- Detect the 4P-1S decay (velocity resolved)
- Plot number of 4P-1S decays vs. laser frequency

New 2S-4P measurement in H (MPQ, Munich, 2017)

- r_p discrepancy: kHz
- Line width: kHz 20'000
- Measurement uncertainty: 3.0 kHz
 - ⇒ split an asymmetric line to 10-4

Beyer et al., Science 358, 79 (2017)

Aldo Antognini

Quantum interference: an old-new systematics

Sansonetti et al., PRL 107, 023001 (2011) Brown et al., PRA 87, 032504 (2013) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011) Amaro et al., PRA 92, 022514 (2015); PRA 92, 062506 (2015)

$$I(\omega) \sim \left| \frac{\vec{D} \cdot \vec{d_1}}{\omega - \omega_1 + i\Gamma_1} + \frac{\vec{D} \cdot \vec{d_2}}{\omega - \omega_2 + i\Gamma_2} \right|^2$$

Quantum interference: an old-new systematics

Quantum interference is complex. Its computation requires several thousands of coupled differential equations, depends on geometry, laser polarisation, detection scheme, initial state population, efficiencies etc.

New 1S-3S measurement in H (LKB, Paris)

- Produce atomic H beam (room temperature)
- Excite the two-photons 1S-3S transition
- Detect the 3S-2P decay
- Plot number of 3S-2P decay vs laser frequency

Aldo Antognini

New 1S-3S measurement in H (LKB, Paris, 2017)

- Line width: 1500 kHz
- Statistical uncertainty: 2.1 kHz
- Total uncertainty: 2.7 kHz
- r_p discrepancy: 9 kHz

Aldo Antognini

Fleurbaey et al., PRL120, 183001 (2018)

New 1S-3S measurement in H (LKB, Paris)

Sources of frequency shift:

- second order Doppler effect (120 kHz)
- light shift
- pressure shift

Biraben, Julien, Plon and Nez, Europhys. Lett. 15, 831 (1991) Galtier et al., J. Phys. and Chem. Ref. Data 44, 031201 (2015)

Preliminary 1S-3S measurement in H/D (MPQ, 2018)

Isolde Workshop, CERN

Preliminary 1S-3S measurement in H/D (MPQ, 2018)

Preliminary 2S-2P measurement in H (Torornto, 2018)

E. Hessels

Preliminary results from new e-p scattering (PRad, 2018)

- windowless target
- non-magnetic calorimeter
- large GEM + scintillators
- · Minimal angle
- Q_{min} reduced by 20 to 2x10⁻⁴ GeV²
- · Normalise with Møller scatt.

$$\left(rac{d\sigma}{d\Omega}
ight)_{ep} = rac{N_{exp}(ep o ep\,in\, heta_i\pm\Delta heta)}{N_{exp}(ee o ee)}\cdotrac{\epsilon_{geom}^{ee}}{\epsilon_{geom}^{ep}}\cdotrac{\epsilon_{det}^{ee}}{\epsilon_{det}^{ep}}\cdot\left(rac{d\sigma}{d\Omega}
ight)_{ee}$$

Preliminary results from e-p scattering (JLAB, 2018)

Preliminary results from e-p scattering (JLAB, 2018)

Present status

0.86

Proton charge radius [fm]

0.92

8.0

0.82

Aldo Antognini

0.84

0.9

0.88

0.94

Spectroscopy of muonic Helium (µ4He+)

Experimental accuracy: 17 GHz (0.066 meV)

Statistics / Laser freq. / systematics unc.: 17 GHz / 100 MHz / 10 MHz

Theory uncertainty: 0.205 meV

$$\Delta E(2S - 2P_{3/2}) = \underbrace{1668.487(14)}_{\text{QED}} - \underbrace{106.358(7)R_E^2}_{\text{finite size}} + \underbrace{6.761(77) + 3.296(189)}_{\text{TPE}} + \underbrace{146.197(12)}_{\text{fine splitting}} \text{ [meV]}$$

Alpha-particle and hellion radii from µHe+ spectroscopy

Extraction of these charge radii from muonic helium is limited by the polarisability contributions.

TPE: the key to extract precise charge radii

Impact of muonic helium (µHe) measurements

Antognini et al., Can. J. Phys. 89, 47 (2011)

Constraints proton radius puzzle Expose existence/absence of muonic force

Benchmark for few-nucleon theories

Improve absolute radii of ⁶He and ⁸He

Enhanced bound-state QED test when combined with He and He+ spectroscopy

Pachucki, Indelicato, Jentschura, Yerokhin, Eides, Karshenboim...

Challenging spectroscopy of He and He+

T. Udem

T.W. Hänsch

K. Eikema

The muX project (PSI, ongoing)

- · charge radii
- quadrupole moments for radioactive nuclei

Aldo Antognini

- H-like atoms
- MeV transition energies
- ΔE_{size}: MeV finite-size effects
- ΔE_{QED}: easy QED corrections
- ΔE_{el}: small atomic electron corrections
- ΔE_{pol} : difficult nuclear polarisability correc.

The hyperfine splitting in μp (PSI, ongoing)

MUSE: Muon scattering (PSI, ongoing)

Aldo Antognini

MUSE at PSI

- μ^{\pm} -p, e[±]-p scattering down to Q²_{min} =2x10⁻³ GeV²
- Common uncertainties \Rightarrow precise $\Delta r = r_p^{\mu} r_p^{e}$
- test µ-e universality
- measure TPE

arXiv:1709.09753

X-ray spectroscopy of high-Z muonic atoms

Finite size effect is huge

High-Z muonic ions (µZ)

$$E \simeq \frac{m_{\mu}}{m_e} R_{\infty} Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) + \Delta E_{\text{QED}} - \Delta E_{\text{size}} + \Delta E_{\text{pol}} + \Delta E_{\text{el}}$$

- H-like atoms
- MeV transition energies
- ΔE_{size}: MeV finite-size effects
- ΔE_{QED}: easy QED corrections
- ΔE_{el}: small atomic electron corrections
- ΔE_{pol}: difficult nuclear polarisability correc.

- Measure X-rays with Ge detectors (0.1 keV acc.)
- Extract charge radii and quadrupole moments

Complications

- nuclear polarisability
- nuclear excitation in final state

Natalia Oreshkina & Niklas Michel, MPI Heidelberg

muX principle: spectroscopy for radioactive nuclei

Radioactive ⇒ µg material

- Stop muons in 100 bar H₂ target with 0.25% D₂ admixture
- Muonic hydrogen (μp) is formed
- In a collision ($\mu p + D_2 \rightarrow \mu d + ...$) the muon transfers to deuterium forming μd, with kinetic energy of 45 eV
- Hydrogen gas is quasi transparent for μd at ~5 eV (Ramsauer-Townsend effect)
- µd reaches the X target and transfers to it to form μX*

Aldo Antognini

- μX* de-excite emitting x-rays
- Measure x-rays with Ge-detectors

The muX setup

- 11 germanium detectors in an array from French/UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

Other goal of muX: Running of the Weinberg angle

$$J^Z_\mu = J^3_\mu - 2\sin^2\theta_W J^\gamma_\mu$$
 Marciano, Czarnecki
$$= \ldots \left(J^3_\mu - 2\kappa(Q^2)\sin^2\theta_W J^\gamma_\mu\right) \equiv \ldots \left(J^3_\mu - 2\sin^2\theta_W (Q^2)J^\gamma_\mu\right)$$

Nature 557, 207(2018)

APV (Ra)
5x better than
APV(Cs)

Running of the Weinberg angle

$$J_{\mu}^{Z} = J_{\mu}^{3} - 2\sin^{2}\theta_{W}J_{\mu}^{\gamma}$$

$$= \dots \left(J_{\mu}^{3} - 2\kappa(Q^{2})\sin^{2}\theta_{W}J_{\mu}^{\gamma}\right) \equiv \dots \left(J_{\mu}^{3} - 2\sin^{2}\theta_{W}(Q^{2})J_{\mu}^{\gamma}\right)$$

APV (Ra) 5x better than APV(Cs)

	$\mu p [meV]$	$\mu d [meV]$	
QED	206	229	×1.1
$k\langle r^2 \rangle$	4	28	$\times 7$
TPE	0.03	1.7	$\times 56$

Pohl et al., Science 353, 669 (2016) Krauth et al., Ann. Phys. 336 168 (2016) Hernandez et. al., PLB 736, 344 (2014) Pachucki et al., PRA 91, 040503(R) (2015)

H/D shift:
$$r_{\rm d}^2 - r_{\rm p}^2 = 3.820\,07(65)\,\,{\rm fm}^2$$
 $\Rightarrow r_{\rm d} = 2.12771(22)\,\,{\rm fm}$ μp : $r_{\rm p} = 0.84087(39)\,\,{\rm fm}$

Consistency of muonic results with 1S-2S H/D isotopic-shift

Pachucki, Bacca, Barnea, Gorchtein, Carlson....

The 2.5σ difference:

- incomplete nuclear polarizabilty?
- BSM physics NOT coupling to n (reduced mass effect)?

D spectroscopy

2.135 2.13 2.14 2.145

Deuteron charge radius r_d [fm]

 3.5σ from ONLY D-data

2.12

- proton sector
- deuteron sector

⇒ Problem with H/D exp (R_∞)?

e-d scatt.

- ⇒ Problem with H/D th.?
- ⇒ BSM with no coupling to n?

2.125