Spectroscopy of muonic atoms

A. Antognini

Paul Scherrer Institute ETH, Zurich

Laser spectroscopy of light muonic atoms

We measured 10 2S-2P transitions in

+ QED + Nuclear structure

$\Rightarrow \quad$| $\mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ |
| :--- |
| charge radii |

Extracting the proton radius from μ p

Measure 2S-2P splitting (20 ppm) and compare with theory
\rightarrow proton radius

$$
\Delta E_{2 P-2 S}^{\mathrm{th}}=206.0336(15)-5.2275(10) r_{\mathrm{p}}^{2}+0.0332(20)[\mathrm{meV}]
$$

$$
\begin{aligned}
\Delta E_{\mathrm{size}} & =\frac{2 \pi(Z \alpha)}{3} r_{\mathrm{p}}^{2}\left|\Psi_{n l}(0)\right|^{2} \\
& =\frac{2(Z \alpha)^{4}}{3 n^{3}} m_{r}^{3} r_{\mathrm{p}}^{2} \delta_{l 0}
\end{aligned} \quad m_{\mu} \approx 200 m_{e}
$$

Principle of the $\mu \mathrm{p} 2 \mathrm{~S}-2 \mathrm{P}$ experiment

Produce many μ^{-}at keV energy

Form μ p by stopping μ^{-}in 1 mbar H_{2} gas

Fire laser to induce the 2S-2P transition

Measure the 2 keV X-rays from 2P-1S decay

Plot number of X -rays vs laser frequency

The setup at the Paul Scherrer Institute

The first μ p resonance (2010)

$$
\begin{gathered}
\text { Discrepancy: } \\
5.0 \sigma \leftrightarrow 75 \mathrm{GHz} \leftrightarrow \delta \nu / \nu=1.5 \times 10^{-3}
\end{gathered}
$$

Pohl et al., Nature 466, 213 (2010)

Three ways to the proton radius

Pohl et al., Nature 466, 213 (2010)
Antognini et al., Science 339, 417 (2013)
Pohl et al., Science 353, 669 (2016)

The r_{p} puzzle has triggered many activities

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory

Rarely criticised since:

$$
m_{\mu} \approx 200 m_{e}
$$

- sensitive to the radius

$$
\sim m^{3} R_{p}^{2}
$$

- BSM physics
- insensitive to systematical effects

$$
\sim 1 / m
$$

- e-p scattering

The proton radius puzzle

- $\mu \mathrm{p}$ experiment

QED

- $\mu \mathrm{p}$ theory
- H experiments

Two-photon exchange

- BSM physics
- e-p scattering

Can be computed with dispersion th. + data

But subtraction term is needed \Rightarrow modelling of proton

Pachucki, Carlson, Birse, McGovern, Pineda, Gorchtein, Pascalutsa, Vanderhaeghen, Alarcon, Miller, Paz, Hill...

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics
- e-p scattering

AGREEMENT

Isolde Workshop, CERN 06.12.2018

Technicalities on TPE in μp

Kinematics: 2 loop variables q^{2} and $\nu=(\mathrm{pq}) / \mathrm{M}$

$$
\mathcal{M}=e^{4} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{4}} \bar{u}(k)\left[\gamma^{\nu} \frac{1}{k-\not q-m_{l}+i \epsilon} \gamma^{\mu}+\gamma^{\mu} \frac{1}{k+\not q-m_{l}+i \epsilon} \gamma^{\nu}\right] u(k) T_{\mu \nu}
$$

Forward virtual Compton amplitude

$$
\begin{aligned}
T^{\mu \nu} & =\frac{i}{8 \pi M} \int d^{4} x e^{i q x}\langle p| T j^{\mu}(x) j^{\nu}(0)|p\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(p-\frac{p q}{q^{2}} q\right)^{\mu}\left(p-\frac{p q}{q^{2}} q\right)^{\nu} T_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

Lamb shift (nS-nP)

$$
\Delta E=-\frac{\alpha^{2}}{2 \pi m_{l} M_{d}} \phi_{n}^{2}(0) \int d^{4} q \frac{\left(q^{2}+2 \nu^{2}\right) T_{1}\left(\nu, q^{2}\right)-\left(q^{2}-\nu^{2}\right) T_{2}\left(\nu, q^{2}\right)}{q^{4}\left[\left(q^{2} / 2 m_{l}\right)^{2}-\nu^{2}\right]}
$$

Slide stolen from Gorchtein

Technicalities on TPE in μp

$\mathrm{T}_{1}, \mathrm{~T}_{2}$ - the imaginary parts known (Optical theorem)
$\operatorname{Im} T_{1}\left(\nu, Q^{2}\right)=\frac{1}{4 M} F_{1}\left(\nu, Q^{2}\right)$
$\operatorname{Im} T_{2}\left(\nu, Q^{2}\right)=\frac{1}{4 \nu} F_{2}\left(\nu, Q^{2}\right)$
Inelastic structure functions = data (real and virtual photoabsorption, FF)

Real parts - from forward dispersion relation

$$
\begin{aligned}
& F_{1}\left(\nu \rightarrow \infty, q^{2}\right) \sim \nu^{1+\epsilon}-\text { subtraction needed } \\
& F_{2}\left(\nu \rightarrow \infty, q^{2}\right) \sim \nu^{\epsilon}-\text { no subtraction }
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Re} T_{1}\left(\nu, Q^{2}\right)=\bar{T}_{1}\left(0, Q^{2}\right)+T_{1}^{\text {pole }}\left(\nu, Q^{2}\right)+\frac{\nu^{2}}{2 \pi M} \int_{\nu_{0}}^{\infty} \frac{d \nu^{\prime}}{\nu\left(\nu^{\prime 2}-\nu^{2}\right)} F_{1}\left(\nu^{\prime}, Q^{2}\right) \\
\operatorname{Re} T_{2}\left(\nu, Q^{2}\right)=T_{2}^{\text {pole }}\left(\nu, Q^{2}\right)+\frac{1}{2 \pi} \int_{\nu_{0}}^{\infty} \frac{d \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} F_{2}\left(\nu^{\prime}, Q^{2}\right)
\end{gathered}
$$

Slide stolen from Gorchtein

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments

Uncertainties and discrepancy

0.3	meV	Discrepancy
0.01	$\mathrm{meV}:$	TPE uncertainty (conservatively, Hill and Paz)
0.0025	$\mathrm{meV}:$	Polarisability-contr. uncertainty (Pascalusa)
0.0020	$\mathrm{meV}:$	TPE uncertainty (McGovern, our choice)
0.0015	$\mathrm{meV}:$	QED uncertainties

0.0023 meV: Measurement uncertainty

- BSM physics
- e-p scattering

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics
- e-p scattering

1S-2S

- Two unknown: R_{∞}, R_{p}
- Two groups of measurements:
- 1S-2S: 10-15 rel. accuracy
- others: <10-13 rel. accuracy and more prone to systematics

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics

- e-p scattering
4σ only when averaging

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory

H

Low sensitivity to r_{p} \Rightarrow requires high-precision \Rightarrow fight with systematics But "easy" to see the signal

- BSM physics
- e-p scattering

Explain the discrepancy by shifting the

$\mu \mathrm{p}(2 \mathrm{~S}-2 \mathrm{P})$	100σ	75 GHz	4Γ
$\mathrm{H}(1 \mathrm{~S}-2 \mathrm{~S})$	$4^{\prime} 000 \sigma$	40 kHz	40Γ
$\mathrm{H}(2 \mathrm{~S}-4 \mathrm{P})$	$<1.5 \sigma$	9 kHz	$7 \cdot 10^{-4} \Gamma$
$\mathrm{H}(2 \mathrm{~S}-2 \mathrm{P})$	$<1.5 \sigma$	5 kHz	$7 \cdot 10^{-4} \Gamma$

$\sigma: \quad \exp$ accuracy
Γ : line width

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics
- e-p scattering

Some open regions for MeV force carrier still resist

Martens \& Ralston (2016), Liu, McKeen \& Miller (2016), Batell et. al (2016)

- Tuning (e.g. vector vs axial-vector)
- Preferential coupling to μ and p
- No UV completion and no full SM gauge inv.

The proton radius puzzle

- $\mu \mathrm{p}$ experiment

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Ros.}}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Mott}} \frac{1}{(1+\tau)}\left(\varepsilon G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)\right)
$$

- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics
- e-p scattering

XXXXX

The proton radius puzzle

- $\mu \mathrm{p}$ experiment
- $\mu \mathrm{p}$ theory
- H experiments
- BSM physics
- e-p scattering

Extrapolation:

- which functionality
- analyticity
- z-expansion vs Q²-expansion
- coefficients with perturbative scaling
- how many degrees of freedom (under-fitting, over-fitting)
- which Q^{2} range
- normalisations
- physics-motivated model (VMD, chPT, dispersion, large tails, higher-moments
- statistical tests, X^{2}, regressions, bias
- TPE corrections

The proton charge radii

The proton charge radii

Higinbotham et al.,, arXiv: 1510.01293
Griffioen et al., arXiv:1509.06676
Lorenz et al., PRD 91, 014023 (2015)
Horbatsch, Hessels, Pineda, arXiv:1610.09760

Bernauer, Distler, arXiv:1606.02159 Sick, Trautmann, arXiv:1701.01809 Lee, Arrington, Hill, arXiv:1505.01489 Hoferichter et al., EPJA 52, 331 (2016) Alarcon, Weiss, arXiv:1710.06430

The race to the proton radius solution

Isolde Workshop, CERN 06.12.2018

The race to the proton radius solution

Atomic spectroscopy

- H(2S-2P) (Toronto)
- H(1S-3S) (LKB, MPQ)
- H(2S-4P) (MPQ)
- $\mathrm{H}_{2}, \mathrm{H}_{2}{ }^{+}, \mathrm{HD}, \mathrm{HD}^{+}, \mathrm{HT}$ (LKB, LaserLaB, ETH)
- He^{+}(LaserLaB, MPQ)
- He (LaserLab, MPQ)
- Li+ (Mainz)
- Muonium (ETH, PSI)
- Positronium (ETH, UC London)
- Rydberg states in H-like ions (NIST)
- Rydberg states in optical lattice (Ann Arbor)

Scattering

- e-p, PRad (JLAB)
- e-p, ISR \& MAGIX (Mainz)
- $\mu-p$, e-p, MUSE (PSI, UniBasel)
- $\mu-p$, COMPASS (CERN)
- e-p, ProRad (Orsay)
- Tohoku, (Sendai)

The proton charge radius from muonic deuterium

Pohl et al., Nature 466, 213 (2010)
Antognini et al., Science 339, 417 (2013)
Pohl et al., Science 353, 669 (2016)

Small value of the proton radius is confirmed from $\mu \mathrm{d}$

New 2S-4P measurement in H (MPQ, 2017)

- Produce atomic H beam at cryogenic temperature
- Populate the 2 State using two-photons excitation
- Excite the 2S-4P transition
- Detect the 4P-1S decay (velocity resolved)
- Plot number of 4P-1S decays vs. laser frequency

New 2S-4P measurement in H (MPQ, Munich, 2017)

- r_{p} discrepancy: 9 kHz
- Line width: $\quad 20$ '000 kHz
- Measurement uncertainty: 3.0 kHz
\Rightarrow split an asymmetric line to 10^{-4}

Quantum interference: an old-new systematics

Sansonetti et al., PRL 107, 023001 (2011)
Brown et al., PRA 87, 032504 (2013)
Horbatsch \& Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011)
Amaro et al., PRA 92, 022514 (2015); PRA 92, 062506 (2015)

$$
=\frac{\left(\vec{D} \cdot \overrightarrow{d_{1}}\right)^{2}}{\left(\omega-\omega_{1}\right)^{2}+\Gamma_{1}^{2}}+\frac{\left(\vec{D} \cdot \overrightarrow{d_{2}}\right)^{2}}{\left(\omega-\omega_{2}\right)^{2}+\Gamma_{2}^{2}}+2 \operatorname{Re}\left(\frac{\left(\vec{D} \cdot \overrightarrow{d_{2}}\right)\left(\vec{D} \cdot \overrightarrow{d_{2}}\right)^{*}}{\left(\omega-\omega_{1}+i \Gamma_{1}\right)\left(\omega-\omega_{2}-i \Gamma_{2}\right)}\right)
$$

Quantum interference: an old-new systematics

Quantum interference is complex. Its computation requires several thousands of coupled differential equations, depends on geometry, laser polarisation, detection scheme, initial state population, efficiencies etc.

New 1S-3S measurement in H (LKB, Paris)

- Produce atomic H beam (room temperature)
- Excite the two-photons 1S-3S transition
- Detect the 3S-2P decay
- Plot number of 3S-2P decay vs laser frequency

New 1S-3S measurement in H (LKB, Paris, 2017)

- Line width: 1500 kHz
- Statistical uncertainty: 2.1 kHz
- Total uncertainty: $\quad 2.7 \mathrm{kHz}$
- r_{p} discrepancy:

9 kHz

New 1S-3S measurement in H (LKB, Paris)

Sources of frequency shift:

- second order Doppler effect (120 kHz)
- light shift
- pressure shift

$$
\delta_{\text {Stark }}=\frac{\mathrm{E}^{2}}{\Delta v_{\mathrm{SP}}}=\frac{v^{2} \mathrm{~B}^{2}}{\Delta v_{\mathrm{SP}}}
$$

$$
\delta_{\mathrm{dop}}=-v_{\mathrm{at}} \frac{\mathrm{v}^{2}}{2 \mathrm{c}^{2}}
$$

Biraben, Julien, Plon and Nez, Europhys. Lett. 15, 831 (1991) Galtier et al., J. Phys. and Chem. Ref. Data 44, 031201 (2015)

Preliminary 1S-3S measurement in H/D (MPQ, 2018)

Continuos spectra

A. Matveev

Preliminary 1S-3S measurement in H/D (MPQ, 2018)

Preliminary 2S-2P measurement in H (Torornto, 2018)

E. Hessels

Preliminary results from new e-p scattering (PRad, 2018)

- windowless target
- non-magnetic calorimeter
- large GEM + scintillators
- Minimal angle
- $Q^{2}{ }_{\text {min }}$ reduced by 20 to $2 \times 10^{-4} \mathrm{GeV}^{2}$
- Normalise with Møller scatt.

Preliminary results from e-p scattering (JLAB, 2018)

Preliminary results from e-p scattering (JLAB, 2018)

Present status

e-p scattering
PRad 2018
H/D (1S-3S)
MPQ 2018
H(2S-2P)
Toronto 2018

Isolde Workshop, CERN 06.12 .2018

Spectroscopy of muonic Helium ($\mu^{4} \mathrm{He}^{+}$)

$\begin{array}{ll}\text { Experimental accuracy: } & 17 \mathrm{GHz}(0.066 \mathrm{meV}) \\ \text { Statistics / Laser freq. / systematics unc.: } & 17 \mathrm{GHz} / 100 \mathrm{MHz} / 10 \mathrm{MHz}\end{array}$
Theory uncertainty:
0.205 meV
$\Delta E\left(2 S-2 P_{3 / 2}\right)=\underbrace{1668.487(14)}_{\text {QED }}-\underbrace{106.358(7) R_{E}^{2}}_{\text {finite size }}+\underbrace{6.761(77)+3.296(189)}_{\text {TPE }}+\underbrace{146.197(12)}_{\text {fine splitting }}[\mathrm{meV}]$

Alpha-particle and hellion radii from $\mu \mathrm{He}^{+}$spectroscopy

Extraction of these charge radii from muonic helium is limited by the polarisability contributions.

TPE: the key to extract precise charge radii

Dinur, Ji, Barnea, Bacca, Hernandez

Phenomenological:
dispersion relations
data

- sum rules

Carlson, Gorchtein, Vanderhaeghen

NLO
$\left(Q / \Lambda_{\chi}\right)^{2}$

LO
$\left(Q / \Lambda_{\chi}\right)^{0}$
chiral EFT few-necleoun th.

2N Force

LO	2N Force
$\left(Q / \Lambda_{\chi}\right)^{0}$	$\chi\|\ldots\|$

Impressive improvement in last years

For $\mu^{3} \mathrm{He}$
Dispersion: $\quad 15.14$ (49) meV
Few-nucleon th.: 15.46 (39) meV

Impact of muonic helium $(\mu \mathrm{He})$ measurements

Constraints proton radius puzzle Expose existence/absence of muonic force

Benchmark for few-nucleon theories

Improve absolute radii of ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$

Enhanced bound-state QED test when combined with He and He^{+}spectroscopy

Pachucki, Indelicato, Jentschura, Yerokhin, Eides, Karshenboim.

Challenging spectroscopy of He and He^{+}

The muX project (PSI, ongoing)

- charge radii
- quadrupole moments for radioactive nuclei

- H-like atoms
- MeV transition energies
- $\Delta \mathrm{E}_{\text {size }}$: MeV finite-size effects
- $\Delta E_{\text {qed }}$: easy QED corrections
- $\Delta \mathrm{E}_{\mathrm{el}}$: small atomic electron corrections
- $\Delta \mathrm{E}_{\text {pol }}$: difficult nuclear polarisability correc.

The hyperfine splitting in $\mu \mathrm{p}$ (PSI, ongoing)

MUSE: Muon scattering (PSI, ongoing)

MUSE at PSI

- $\mu^{ \pm}-\mathrm{p}, \mathrm{e}^{ \pm}-\mathrm{p}$ scattering down to $\mathrm{Q}^{2}{ }_{\text {min }}=2 \times 10^{-3} \mathrm{GeV}^{2}$
- Common uncertainties
\Rightarrow precise $\Delta r=r_{p}{ }^{\mu}-r_{p}{ }^{e}$
- test μ-e universality
- measure TPE

$\mu \mathrm{p}, \mu \mathrm{d}, \mu \mathrm{He}(2 \mathrm{~S}-2 \mathrm{P})$ high-Z muonic atoms hyper-fine splitting

X-ray spectroscopy of high-Z muonic atoms

- Negative muons at rest quickly get captured by surrounding atoms
- Cascade down into 1 s state emitting characteristic Xrays
- Measure characteristic Xrays to extract information about the nuclear structure

Finite size effect is huge

High-Z muonic ions ($\mu \mathrm{Z}$)

$$
E \simeq \frac{m_{\mu}}{m_{e}} R_{\infty} Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)+\Delta E_{\mathrm{QED}}-\Delta E_{\mathrm{size}}+\Delta E_{\mathrm{pol}}+\Delta E_{\mathrm{el}}
$$

- H-like atoms
- MeV transition energies
- $\Delta \mathrm{E}_{\text {size }}$: MeV finite-size effects
- $\Delta E_{\text {Qed }}$: easy QED corrections
- $\Delta \mathrm{E}_{\mathrm{el}}$: small atomic electron corrections
- $\Delta \mathrm{E}_{\text {pol }}$: difficult nuclear polarisability correc.
- Measure X-rays with Ge detectors (0.1 keV acc.)
- Extract charge radii and quadrupole moments

Complications

- nuclear polarisability
- nuclear excitation in final state

Natalia Oreshkina \& Niklas Michel, MPI Heidelberg

muX principle: spectroscopy for radioactive nuclei

Radioactive $\Rightarrow \mu \mathrm{g}$ material

- Stop muons in 100 bar H_{2} target with $0.25 \% \mathrm{D}_{2}$ admixture
- Muonic hydrogen ($\mu \mathrm{p}$) is formed
- In a collision ($\mu \mathrm{p}+\mathrm{D}_{2} \rightarrow \mu \mathrm{~d}+\ldots$) the muon transfers to deuterium forming $\mu \mathrm{d}$, with kinetic energy of 45 eV
- Hydrogen gas is quasi transparent for $\mu \mathrm{d}$ at $\sim 5 \mathrm{eV}$ (Ramsauer-Townsend effect)
- $\mu \mathrm{d}$ reaches the X target and transfers to it to form μX^{*}
- $\mu \mathrm{X}^{*}$ de-excite emitting x-rays
- Measure x-rays with Ge-detectors

The muX setup

- 11 germanium detectors in an array from French/UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

Other goal of muX: Running of the Weinberg angle

$$
J_{\mu}^{Z}=J_{\mu}^{3}-2 \sin ^{2} \theta_{W} J_{\mu}^{\gamma}
$$

Marciano, Czarnecki
$=\ldots\left(J_{\mu}^{3}-2 \kappa\left(Q^{2}\right) \sin ^{2} \theta_{W} J_{\mu}^{\gamma}\right) \equiv \ldots\left(J_{\mu}^{3}-2 \sin ^{2} \theta_{W}\left(Q^{2}\right) J_{\mu}^{\gamma}\right)$

APV (Ra)
$5 x$ better than APV(Cs)

Nature 557, 207(2018)

Running of the Weinberg angle

$$
J_{\mu}^{Z}=J_{\mu}^{3}-2 \sin ^{2} \theta_{W} J_{\mu}^{\gamma}
$$

$$
=\ldots\left(J_{\mu}^{3}-2 \kappa\left(Q^{2}\right) \sin ^{2} \theta_{W} J_{\mu}^{\gamma}\right) \equiv \ldots\left(J_{u}^{3}-2 \sin ^{2} \theta_{W}\left(Q^{2}\right) J_{\mu}^{\gamma}\right)
$$

APV (Ra)
$5 x$ better than APV(Cs)

2S-2P spectroscopy of muonic deuterium ($\mu \mathrm{d}$)

2 2S-2P spectroscopy of muonic deuterium ($\mu \mathrm{d}$)

Pohl et al., Science 353, 669 (2016)
Krauth et al., Ann. Phys. 336168 (2016)
Hernandez et. al., PLB 736, 344 (2014)
Pachucki et al., PRA 91, 040503(R) (2015)

2 2S-2P spectroscopy of muonic deuterium ($\mu \mathrm{d}$)

$$
\left.\begin{array}{ll}
\text { H/D shift: } & r_{\mathrm{d}}^{2}-r_{\mathrm{p}}^{2}=3.82007(65) \mathrm{fm}^{2} \\
\mu p: & r_{\mathrm{p}}=0.84087(39) \mathrm{fm}
\end{array}\right\} \Rightarrow r_{\mathrm{d}}=2.12771(22) \mathrm{fm}
$$

Consistency of muonic results with 1S-2S H/D isotopic-shift

Pachucki, Bacca, Barnea, Gorchtein, Carlson...

The 2.5σ difference:

- incomplete nuclear polarizabilty?
- BSM physics NOT coupling to n (reduced mass effect)?

2 2S-2P spectroscopy of muonic deuterium ($\mu \mathrm{d}$)

$$
\left.\begin{array}{ll}
\text { H/D shift: } & r_{\mathrm{d}}^{2}-r_{\mathrm{p}}^{2}=3.82007(65) \mathrm{fm}^{2} \\
\mu p: & r_{\mathrm{p}}=0.84087(39) \mathrm{fm}
\end{array}\right\} \Rightarrow r_{\mathrm{d}}=2.12771(22) \mathrm{fm}
$$

7σ from CODATA

BUT CODATA contains proton-data

2 2S-2P spectroscopy of muonic deuterium ($\mu \mathrm{d}$)

$$
\left.\begin{array}{ll}
\text { H/D shift: } & r_{\mathrm{d}}^{2}-r_{\mathrm{p}}^{2}=3.82007(65) \mathrm{fm}^{2} \\
\mu p: & r_{\mathrm{p}}=0.84087(39) \mathrm{fm}
\end{array}\right\} \quad \Rightarrow \quad r_{\mathrm{d}}=2.12771(22) \mathrm{fm}
$$

3.5σ from ONLY D-data
\Rightarrow double discrepancy

- proton sector
- deuteron sector
\Rightarrow Problem with $H / D \exp \left(R_{\infty}\right)$?
\Rightarrow Problem with H/D th.?
\Rightarrow BSM with no coupling to n ?

