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What is generative modeling about?

Understanding:

finding underlying 
factors (discovery)

predicting and 
anticipating future 
events (planning)

finding analogies 
(transfer learning)

detecting rare events 
(anomaly detection)

decision making



Why generative modeling?

Why?

Less labeled data

Compression

Uncertainty

Hidden structure
Data simulation

Exploration



Generative modeling: How?

How?

Fully-observed 
(e.g., PixelCNN)

Implicit models
(e.g., GANs)

Prescribed models
(e.g., VAE)

Latent variable 
models



Recent successes: Style transfer

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. CVPR 2017.



Recent successes: Image generation

generated

real

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. ICLR 2017.



Recent successes: Text generation

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017



Recent successes: Audio generation

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

reconstruction generation



Recent successes: Reinforcement learning

Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint. arXiv preprint arXiv:1803.10122.



Recent successes: Drug discovery

Gómez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01925.



Recent successes: Physics (interacting systems)

Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. ICML 2018.



Generative modeling: Auto-regressive models

General idea is to factorise the joint distribution:

and use neural networks (e.g., convolutional NN) to model it efficiently:

Van Den Oord, A., et al. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.



Generative modeling: Latent Variable Models

We assume data lies on a low-dimensional manifold so the generator is:

where:

Two main approaches:

→ Generative Adversarial Networks (GANs)

→ Variational Auto-Encoders (VAEs)



Generative modeling: GANs

We assume a deterministic generator:

and a prior over latent space:



Generative modeling: GANs

We assume a deterministic generator:

and a prior over latent space:

How to train it? 



Generative modeling: GANs

We assume a deterministic generator:

and a prior over latent space:

How to train it? By using a game!



Generative modeling: GANs

We assume a deterministic generator:

and a prior over latent space:

How to train it? By using a game!

For this purpose, we assume a discriminator:



Generative modeling: GANs

The learning process is as follows:

→ the generator tries to fool the discriminator;

→ the discriminator tries to distinguish between the real 

and fake images.

We define the learning problem as a min-max problem:

In fact, we have a learnable loss function!

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014



Generative modeling: GANs

The learning process is as follows:

→ the generator tries to fool the discriminator;

→ the discriminator tries to distinguish between the real 

and fake images.

We define the learning problem as a min-max problem:

In fact, we have a learnable loss function!

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014

→It learns high-order statistics.



Generative modeling: GANs



Generative modeling: GANs

Pros:
→ we don’t need to specify a likelihood function;
→ very flexible;
→ the loss function is trainable;
→ perfect for data simulation.

Cons:
→ we don’t know the distribution;
→ training is highly unstable (min-max objective);
→ missing mode problem.
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Generative modeling: VAEs

We assume a stochastic generator (decoder):

and a prior over latent space:

Additionally, we use a variational posterior (encoder):

How to train it? Using the log-likelihood function!



Variational inference for Latent Variable Models



Variational inference for Latent Variable Models

Variational posterior



Variational inference for Latent Variable Models

Jensen’s inequality



Variational inference for Latent Variable Models

Reconstruction error Regularization



Variational inference for Latent Variable Models

decoder

encoder

prior



Variational inference for Latent Variable Models

decoder (Neural Net)

encoder (Neural Net)

prior

= Variational Auto-Encoder
+ reparameterization trick

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. (ICLR 2014)



Variational Auto-Encoder (Encoding-Decoding)
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Variational Auto-Encoder (Generating)



Variational Auto-Encoder: Extensions

Normalizing flows
Volume-preserving flows
non-Gaussian distributions

Autoregressive Prior
Objective Prior
Stick-Breaking Prior
VampPrior

Importance Weighted AE
Renyi Divergence
Stein Divergence

Fully-connected
ConvNets
PixelCNN
Other

Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders using householder flow. NIPS Workshop 2016.
Berg, R. V. D., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. UAI 2018.
Tomczak, J. M., & Welling, M. (2017). VAE with a VampPrior. arXiv preprint arXiv:1705.07120. (AISTATS 2018)
Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018.



Generative modeling: VAEs

Pros:
→ we know the distribution and can calculate the likelihood function;
→ we can encode an object in a low-dim manifold (compression);
→ training is stable;
→ no missing modes.

Cons:
→ we need know the distribution;
→ we need a flexible encoder and prior;
→ blurry images (so far…).



Generative modeling: VAEs (extensions)

● Normalizing flows

○ Intro

○ Householder flow

○ Sylvester flow

● VampPrior



Conclusion

Generative modeling: the 
way to go to achieve AI.

Deep generative modeling: 
very successful in recent 
years in many domains.

Two main approaches: 
GANs and VAEs.

Next steps: video 
processing, better priors 
and decoders, geometric 
methods, …
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Code on github:
https://github.com/jmtomczak

Webpage:
http://jmtomczak.github.io/

Contact:
jakubmkt@gmail.com The research conducted by Jakub M. 

Tomczak was funded by the 
European Commission within the 
Marie Skłodowska-Curie Individual 
Fellowship (Grant No. 702666, ”Deep 
learning and Bayesian inference for 
medical imaging”).



APPENDIX



Variational Auto-Encoder

Normalizing flows
Volume-preserving flows
non-Gaussian distributions



Improving posterior using Normalizing Flows

● Diagonal posterior - insufficient and inflexible.

● How to get more flexible posterior?

➢ Apply a series of T invertible transformations 

● New objective:

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770. ICML 2015
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Change of variables:
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Improving posterior using Normalizing Flows

● Diagonal posterior - insufficient and inflexible.

● How to get more flexible posterior?

➢ Apply a series of T invertible transformations 

● New objective:

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770. ICML 2015

Jacobian determinant: (i) general normalizing flow (|det J| is easy to calculate);

  (ii) volume-preserving flow, i.e., |det J| = 1.



Volume-preserving flows

● How to obtain more flexible posterior and preserve |det J|=1?

● Model full-covariance posterior using orthogonal matrices.

● Proposition: Apply a linear transformation:

● Question: Is it possible to model an orthogonal matrix efficiently?

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

and since U is orthogonal, Jacobian-determinant is 1.

BACK
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Householder Flow

● How to obtain more flexible posterior and preserve |det J|=1?

● Model full-covariance posterior using orthogonal matrices.

● Proposition: Apply a linear transformation:

● Question: Is it possible to model an orthogonal matrix efficiently? YES

and since U is orthogonal, Jacobian-determinant would be 1.

Theorem
Any orthogonal matrix with the basis acting on the K-dimensional 
subspace can be expressed as a product of exactly K 
Householder transformations.

Sun, X., & Bischof, C. (1995). A basis-kernel representation of orthogonal matrices. SIAM Journal on Matrix Analysis and 
Applications, 16(4), 1184-1196.

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016



Householder Flow

In the Householder transformation we reflect a vector around a hyperplane 
defined by a Householder vector 

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

Very efficient: small number of parameters, |J|=1, easy amortization (!). 



Householder Flow (MNIST)

Tomczak, J. M., & Welling, M. (2016). Improving Variational Inference with Householder Flow. arXiv preprint arXiv:1611.09630. NIPS Workshop on Bayesian Deep Learning 
2016

Method ELBO

VAE -93.9

VAE+HF(T=1) -87.8

VAE+HF(T=10) -87.7

VAE+NICE(T=10) -88.6

VAE+NICE(T=80) -87.2

VAE+HVI(T=1) -91.7

VAE+HVI(T=8) -88.3

VAE+PlanarFlow(T=10) -87.5

VAE+PlanarFlow(T=80) -85.1
Non-linear

Volume-preserving



General normalizing flow

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)

BACK



Sylvester Flow

● Can we have a non-linear flow with a simple Jacobian-determinant?

● Let us consider the following normalizing flow:

where A is DxM, B is MxD.

● How to calculate the Jacobian-determinant efficiently?

➢ Sylvester’s determinant identity

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)
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Sylvester Flow

● Can we have a non-linear flow with a simple Jacobian-determinant?

● Let us consider the following normalizing flow:

where A is MxD, B is DxM.

● How to calculate the Jacobian-determinant efficiently?

➢ Sylvester’s determinant identity

Theorem
For all

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow

● How to use the Sylvester’s determinant identity?

● How to parameterize matrices A and B?

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow

● How to use the Sylvester’s determinant identity?

● How to parameterize matrices A and B?

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)

Householder matrices, permutation matrix, orthogonalization procedure



Sylvester Flow

● The Jacobian-determinant:

● As a result, for properly chosen h, the determinant is upper-triangular and, 

thus, easy to calculate.

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Sylvester Flow (MNIST)
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Sylvester Flow
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Sylvester Flow

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference, UAI 2018 (oral presentation)



Variational Auto-Encoder

Autoregressive Prior
Objective Prior
Stick-Breaking Prior
VampPrior

BACK



New Prior

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018 (oral presentation, 14% of accepted papers)



New Prior

● Let’s re-write the ELBO:

 

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior

● Let’s re-write the ELBO:

 

Empirical distribution

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior

● Let’s re-write the ELBO:

 
Aggregated posterior

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018
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New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:
infeasible

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018
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New Prior (Variational Mixture of Posteriors Prior)

● We look for the optimal prior using the Lagrange function:

● The solution is simply the aggregated posterior.

● We approximate it using K pseudo-inputs instead of N observations:

they are trained from scratch 
by SGD

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018



New Prior (Variational Mixture of Posteriors Prior)

pseudoinputs



New Prior (Variational Mixture of Posteriors Prior)

pseudoinputs



New Prior (Variational Mixture of Posteriors Prior)

pseudoinputs



Toy problem (MNIST): VAE with dim(z)=2
Latent space representation + psedoinputs (black dots)

K=10standard



Toy problem (MNIST): VAE with dim(z)=2
Latent space representation + psedoinputs (black dots)

K=100standard



Experiments

Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior, AISTATS 2018
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