

WP5 Exotic Undulator, Tasks List David Zhu, Liang Zhang, Wenlong He, Adrian Cross

- Sub-Task 1 Laser undulator design
- Sub-Task 2 Plasma undulator design
- Sub-Task 3 <u>RF undulator design (ANSTO & Strathclyde)</u>
 - RF undulator research overview
 - RF undulator physics
 - RF undulator design and numerical simulations
 - Feasibility evaluation of RF undulator for use in CompactLight
- Future Work

Principle of FEL

Coherent wavelength is given by

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{k^2}{2} \right)$$

 λ_u is the period of the undulator

Typically best values are (e.g. Swiss FEL)

 $\lambda_u = 15$ mm

 $k = \frac{|e|\lambda_u B_0}{2\pi mc}$

Consequently for $\lambda = 0.1$ nm

k is the undulator strength parameter

ABP

E ~ 6GeV

- Proposed by T. Plettner in 2007
- Small period of 0.3 mm, k = 0.14
- Difficulties:
 - The beam should have small emittance
 - It is difficult to keep electric field in phase with the electron bunch

ABP

Figure source: T. Plettner and R. L. Byer, PRST-AB 11, 030704 (2008)

Plasma Undulator

ABP

- J.W. Wang, C.B. Schroeder, R. Li, M. Zepf and S.G. Rykovanov, "Plasma channel undulator excited by high-order laser modes" Science Reports, 16884, (2017)
- Small period of $\sim 1 \text{ mm}$, k = 0.44, Nos of periods 20
- Laser-created plasma undulator together with a laser-plasma electron accelerator (LPA), it is an open question whether these plasma undulators can be used as an FEL
 - Large radiation spread caused by varying values of undulator strength k
 - Strong focusing and hence large electron beam divergence
 - Electron trajectories are not independent of the injection positions
 - Stability of plasma undulator dependent on the laser and plasma stability

Figure source: J.W. Wang et al, Science Reports, 16884, (2017)

ABP

Microwave undulator (UK XFEL)

Liang Zhang^{1,2}, Wenlong He¹, Jim Clarke^{2,3} & Adrian Cross^{1,2}

¹Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK ²The Cockcroft Institute, Daresbury Laboratory, Warrington. WA4 4AD, UK ³Science and Technology Facilities Council, Daresbury Laboratory, Warrington, WA4 4AD, U.K.

$$E_x = E_0 \sin(2\pi z/\lambda_g) \cdot \sin(\omega t)$$

$$B_y = B_0 \cos(2\pi z/\lambda_g) \cdot \cos(\omega t)$$

$$F_x = -e(E_x - v_z B_z)$$

Science & Technology

Facilities Council

 $B_{y} = B_{0} sin(2\pi z/\lambda_{u}) = B_{0} sin(k_{u}z)$ $F_{x} = ev_{z}B_{z}$

ABP

In microwave undulator, the electron bunch see both the electric field and magnetic field.

Figure source: T. Shintake, Development of Microwave Undulator, 1983

Hybrid modes – HEn modes Strathclyde

• A corrugated waveguide has interesting feature of being able to generate a quasioptical mode, which has very low loss. They have been widely used as mode converter horns or as high power gyrotron driven transmission line systems

Previous Experiments

Schematic layout of microwave undulator demonstration experiment at NLCTA, SLAC. EG: electron gun, C1: bypass chicane to introduce seed laser, SU: static undulator, C2: chicane used for spatial bunching when required, MU: microwave undulator, ES: energy spectrometer for electron beam, YAG: yttrium aluminum garnet screen.

Source: Sami Tantawi, Experimental Demonstration of a Tunable Microwave Undulator

Cockcroft Institute

Demonstration of tunable undulator operation. (a) Spectra for various K. (b) Fundamental wavelength of on-axis radiation vs K for two beam energies. Each point with an error bar indicates a mean and standard deviation obtained from 10 to 100 data snapshots.

Science & Technology

Facilities Council

Source: Sami Tantawi, High-Field Short-Period Microwave Undulators

ABP

What we propose?

ABP

Possible improvements:

Facilities Council

- (1) Evaluate the possibility to operate at Ka-band, to achieve short wavelength operation
- (2) Possible to further improve the corrugated waveguide, and further reduce the field at the wall.

	State-of-the-art undulator	Record breaking undulator	Dream Undulator
Period (mm)	13.9	13.9	4.4
Beam Aperture (mm)	5.0	5.0	5.0
Peak B Field (T)	0.92	1.62	2.0
K Parameter	1.2	2.1	0.82
Length (m)	4.0	1.0 - 4.0	1.0 - 4.0
Operating frequency (GHz)	11.424	11.424	36
Required microwave power (MW)	152	185 - 464	108 - 272
Required pulse length (us)	5.8	1.4 - 5.7	0.8 - 3.2
Science & Technology		$P \propto L^{2/3}$	$T \propto L$

Corrugated waveguide design

-2.22e+0 -2.91e+0

ABP

HE11 mode

HE12 mode

Operating mode	HE ₁₁	HE ₁₂
Operating frequency	36	36
(GHz)		
λ_0 (mm)	8.33	8.33
R_b (mm)	2.0	2.0
d ₁ (mm)	$4R_{b} = 8.0$	$9R_{b} = 18.0$
depth = $\lambda_0/4$ (mm)	2.1	2.1
λ_g (mm)	9.06	9.12
$p = \lambda_g/3$ (mm)	3.00	3.02
w (mm)	0.5	0.5
$b = p - w (\mathbf{mm})$	2.50	2.52
Q factor	94,344	187,073
Input power (MW)	50	50
Peak Ex on axis (V/m)	3.8E8	3.7E8
B_{u} (T)	1.27	1.23

Dimensions estimated from theoretical calculation

H2020 CompactLight, 19th -20th June 2018, Trieste, Italy

ABP

Facilities Council

36 GHz corrugated cavity

The Q factors and eigenfrequencies changes with the period number (cavity length). However large period number leads to a long computing time and large memory requirements. Parameter scans were used to determine the final dimensions.

• University of Strathclyde HPM source produced 65MW of power at 36GHz (I.V. Konoplev, A.W. Cross, P. MacInnes, W. He et al, Appl. Phys. Letts., **92**, 211501, 2008)

Final parameters:

Radius of the waveguide: 8.88 mm Period of the corrugation: 3.73 mm Corrugation depth: 2.31 mm Corrugation slot: 0.55 mm Coupler radius: 34.56 mm Period number: 100 Uniform field length: 1 meter Resonance frequency: 35.2 GHz Q factor: 66,000 Shunt impedance: 2.36E5 Peak field at the center: 0.926E8 V/m @ input power of 55.9 MW

BP

Further improvement

Help

ABP

To achieve higher Q factor. Parameter scanning of the coupler dimensions. It requires a lot of computing time as the structure is relatively large.

The Q factor was improved from 64,400 to 89,650. Nearly 40% improvement.

Science & Technology Facilities Council

Conclusion and Future Work:

- Simulations of electromagnetic wave fields setup in the cavity [Strathclyde]
- Electron beam dynamics simulations: ASTRA code [ANSTO]
- Photon radiation simulations: SPECTRA code and SIMPLEX code [ANSTO]
 - Need to know the electron beam parameters
- A 36 GHz microwave undulator conceptual design report
 - Manufacture a section of the 36GHz RF undulator in copper
 - Measurement of its reflection, transmission and losses using a Vector Network Analyser

Acknowledgements

This work is supported by the European Commission Horizon 2020 Project "CompactLight" (777431-XLS), The support of the STFC UK (Cockcroft Institute Core Grant) is gratefully acknowledged

Thank you for your attention!

Auxiliary Slide Electron beam parameters

- Beam Energy
- Bunch charge
- Energy Spread (rms)
- Normalized horizontal emittance
- Bunch length
- Max Bunch Repetition
- Pulse length
- Number of bunches per pulse
- Repetition rate

H2020 CompactLight, 19th -20th June 2018, Trieste, Italy

6 GeV < 250 pC 0.2% < 1 mm mrad 8µm 0.5GHz 150ns 1 - 3 50Hz (1000 Hz)

