K-band lineariser from a beam-dynamics perspective

Andrea Latina (CERN)

XLS First Midterm Review - Trieste, 19-20 June 2018

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

1/8 A. Latina - K-band lineariser

Target parameters and machine schematics

	σ_z	$\langle E \rangle$
Initial	131.3 <i>µ</i> m	8 MeV
After K-band	-	160 MeV
After BC1	<mark>64</mark> μm	-
After Linac1	-	1.6 GeV
After BC2	<mark>8</mark> μm	-
After Linac2	-	4.6 GeV

Machine schematics:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Initial particle distribution

From an X-band gun, particle distribution courtesy of Avni Aksoy:

Characterisation of the particle distribution:

$$P [MeV/c] = m (S [mm])^2 + nS [mm] + P_{max} [MeV/c]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

gives:

$$m = -0.253291 \text{ MeV/c/mm}^2$$

 $n = 0 \text{ MeV/c/mm}$
 $P_{\text{max}} = 7.9945 \text{ MeV/c}$

Q=250 pC; $\sigma_z=131.3~\mu{
m m};$ $\sigma_{P_{
m uncorrelated}}=0.3$ keV/c.

3/8 A. Latina - K-band lineariser

Optimisation procedure

Multivariate non-linear optimisation, tracking performed using a dedicated 1-D tracking code that implements

Acceleration

$$E \leftarrow E + eV_{RF} \cos(\phi_{RF} - K_{RF}z) - \Delta E_{\text{long wakes}}$$

Longitudinal wakefields

$$\Delta E_{\text{long wakes}} = Ne^{2}L_{\text{RF}}\int_{z}^{\infty}W_{\parallel}\left(z'-z\right)\rho\left(z'\right)dz'$$

*W*_{||} (*z'* − *z*) = Karl Bane's formulæ, with aperture *a*, gap length *g*, and cell length *l*:
 X-band (Frascati structure):

a = 3.20 mm; g = 6.495 mm; l = 8.32 mm

K-band:

a = 10 mm, or 2.5 mm; $g = g_{X-\text{band}}/3$; $I = I_{X-\text{band}}/3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

86 cells

Magnetic compressors: $R_{56} \neq 0$. [For now I assumed $T_{566} = 0$ (spoiler alert: all solutions seem to favour arcs, rather than chicanes)]

X-band and K-band wakefields

X0_phase = 8.7481 deg X1_phase = 4.7167 deg X2_phase = 25.724 deg K_phase = 292.57 deg K_voltage = 10.290 MV R0_56 = 0.020104 m R1_56 = 0.031820 m X0_voltage = 0.13179 GV X1_voltage = 1.4316 GV X2_voltage = 3.2947 GV

Plot legend:

after gun	after k-band
after BC1	after X1
after BC2	after X2

Final peak-to-peak energy spread =-0.4%..0.4%

X-band and K-band wakefields $a_K = 10 \text{ mm}$

XLS.X0_phase = -32.77 deg XLS.X0_voltage = (200.0) MV XLS.K_phase = 313 deg XLS.K_voltage = (17.7) MV XLS.BC1_R56 = 0.001; m XLS.X1_phase = -16.82; deg XLS.X1_voltage = 1.661; GV XLS.BC2_R56 = 0.009; m XLS.X2_phase = -49; deg XLS.X2_voltage = 4.237; GV

Plot legend:

after gun	after k-band
after BC1	after X1
after BC2	after X2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Final relative energy spread =0.04%

Effects of wakefields

Short-range wakefields scale as

$$W_{\parallel}(s) \approx \frac{Z_0 c}{\pi a \sqrt{a^2 + 8.6 s \lambda_{\rm rf}}}$$
$$W_{\perp}(s) \approx \frac{2Z_0 c s}{\pi a^2 (a^2 + s \lambda_{\rm rf})}$$

over the range s < a/4 and $0.1 < a/\lambda_{rf} < 0.2$ (A.Chao, Handbook of Acc. Physics). compating 10 mm and 2.5 mm apertures:

$$W_{\perp,\ 2.5\ \mathrm{mm}}pprox 256 imes W_{\perp,\ 10\ \mathrm{mm}}$$

Impact of longitudinal wakefields:

correlated energy spread (induce energy chirp)

Impact of transverse wakefields:

beam-breakup: cured with autophasing (or BNS damping)

emittance growth due to misalignments

$$\Delta(\gamma\epsilon) \propto \sigma_{acc\ mis}^2 \left[NW_{\perp} \left(2\sigma_z \right) \right]^2 \langle \beta \rangle \frac{L_{acc}}{2\alpha G} \left[\left(\frac{E_f}{E_i} \right)^{\alpha} - 1 \right]$$

 α = lattice parameter.

jitter amplification

► Cured with strong focusing, tight misalignment tolerances

Summary

- We are in a wakefield-dominated machine (X-band)
- The K-band lineariser helps with the longitudinal phase space, but it dangerously harm the transverse one
 - 2.5 mm aperture has \approx 256 times W_{\perp} effect than 10 mm
 - impact on the transverse emittance goes with the square of W_{\perp}
- Numerical simulations will have be performed to check the models, at both 2.5 mm and 10 mm, as these models do not fully apply ($a/\lambda_{\rm rf} \approx 0.3$ at 2.5 mm, and $a/\lambda_{\rm rf} \approx 1.16$ at 10 mm)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・