Kaon Spectroscopy with Kaon Beam

Boris Grube

Institute for Hadronic Structure and Fundamental Symmetries
Technische Universität München
Garching, Germany

Mini Workshop for a QCD Facility at the SPS after 2021 CERN, 20. Jun 2018

The Quest for exotic Forms of Matter

• In principle, QCD permits color-neutral meson-like states in addition to $|q\bar{q}\rangle$

Physical mesons

• Linear superpositions of *all* allowed basis states

Exotic mesons

- States with small or vanishing $|q\bar{q}\rangle$ component
- Appear either as supernumerous states or mix with conventional states with same quantum numbers

The Quest for exotic Forms of Matter

• In principle, QCD permits color-neutral meson-like states in addition to $|q\bar{q}\rangle$

Physical mesons

• Linear superpositions of *all* allowed basis states

Exotic mesons

- States with small or vanishing $|q\bar{q}\rangle$ component
- Appear either as supernumerous states or mix with conventional states with same quantum numbers

The Quest for exotic Forms of Matter

 In principle, QCD permits color-neutral meson-like states in addition to $|q\bar{q}\rangle$

Physical mesons

 Linear superpositions of all allowed basis states

Exotic mesons

- States with small or vanishing $|q\bar{q}\rangle$ component
- Appear either as supernumerous states or mix with conventional states with same quantum numbers

PDG 2016: 25 kaon states below $3.1 \,\mathrm{GeV}/c^2$

- Only 12 kaon states in summary table, 13 need confirmation
- Many predicted quark-model states still missing
- Some hints for supernumerous states

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K_0^*(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \to D^0 K^{\pm}$ with $D^0 \to K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in K_S^0 π^\pm subsystems

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K_0^*(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \to D^0 K^{\pm}$ with $D^0 \to K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in K^0_S π^\pm subsystems

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K_0^*(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \to D^0 K^{\pm}$ with $D^0 \to K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K_S^0 \pi^\pm$ subsystems

Production of excited Kaons

- High-energy kaon beam on stationary target (proton or nucleus)
- Excitation of beam kaon into *X* via Pomeron/Reggeon exchange
- Dissociation of *X* into various *n*-body mesonic final states
 - π , K, η , η' , ...
- Not very selective: all kaon states can appear as *X*
- Large cross section

How to get more Data?

Main limitation

- Kaon content of 190 GeV/c h⁻ beam from current M2 beam line
- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- Intensity of K^- component at COMPASS target: $10^5 \,\mathrm{s}^{-1}$

Goal

- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $> 10^7~K^-\pi^+\pi^-$ events (assuming same acceptance as current experimental setup) \Rightarrow approximately $10 \times$ world data

Possible solution

RF-separated beam at M2 beam line

see talk by J. Bernhard)

How to get more Data?

Main limitation

- Kaon content of 190 GeV/c h⁻ beam from current M2 beam line
- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- Intensity of K^- component at COMPASS target: $10^5 \, \mathrm{s}^{-1}$

Goal

- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $> 10^7 K^- \pi^+ \pi^-$ events (assuming same acceptance as current experimental setup) \Rightarrow approximately $10 \times$ world data

Possible solution

RF-separated beam at M2 beam line

see talk by J. Bernhard)

How to get more Data?

Main limitation

- Kaon content of 190 GeV/c h⁻ beam from current M2 beam line
- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- Intensity of K^- component at COMPASS target: $10^5 \,\mathrm{s}^{-1}$

Goal

- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $> 10^7 K^- \pi^+ \pi^-$ events (assuming same acceptance as current experimental setup) \Rightarrow approximately $10 \times$ world data

Possible solution

RF-separated beam at M2 beam line

(see talk by J. Bernhard)

Kaon beam experiments

- J-PARC K10 beam line
 - Separated \bar{p} and K^- beams with 2 to $10 \, \text{GeV}/c$ and $10^7 \, K^-$ per spill
 - Main focus on hyperon spectroscopy, di-baryons, and study of mesons in nuclear medium
 - Low beam energy
 - Separation between beam and target excitations difficult
 - More complicated production process (various Reggeons)
- Neutral kaon beam at GlueX (Jlab)
 - K_I^0 beam with 0.3 to 10 GeV/c and $10^4 \,\mathrm{s}^{-1}$ intensity
 - Main focus on hyperon spectroscopy

Kaon beam experiments

- J-PARC K10 beam line
 - Separated \bar{p} and K^- beams with 2 to $10 \, \text{GeV}/c$ and $10^7 \, K^-$ per spill
 - Main focus on hyperon spectroscopy, di-baryons, and study of mesons in nuclear medium
 - Low beam energy
 - Separation between beam and target excitations difficult
 - More complicated production process (various Reggeons)
- Neutral kaon beam at GlueX (Jlab)
 - K_L^0 beam with 0.3 to $10 \,\mathrm{GeV}/c$ and $10^4 \,\mathrm{s}^{-1}$ intensity
 - Main focus on hyperon spectroscopy

Decays of τ leptons or heavy mesons

- ullet Limited mass reach for charmed mesons and au leptons
- Mainly BESIII, Belle II, LHCb
- Current data samples typically factor 10 smaller than existing COMPASS data set

COMPASS: $K^-\pi^+\pi^-$

Photoproduction: $\gamma p \rightarrow X p$

- GlueX Phase IV proposal (Jlab)
 - $100 \times 10^6 X \rightarrow KK\pi\pi$ events
 - $30 \times 10^6 X \rightarrow KK\pi$ events
- Excited kaons appear in subsystems
 - Could be extracted using freed-isobar method
 - More complicated compared to direct production
 - Possible distortions due to rescattering effects
 - More difficult to find new states

Beam PID

- Upgrade of CEDAR detectors
 - \Rightarrow improve rate capability and thermal stability
- CEDAR PID requires precise measurement of beam inclination with resolution $< 40 \,\mu rad \Rightarrow silicon beam telescope$

Spectrometer

- As uniform acceptance as possible
- High-precision tracking over broad kinematic range
- New vertex detector: precise measurement of vertex position
- Improved RPD: detection of target recoil particle
 - Higher resolution of exclusivity variables

Beam PID

- Upgrade of CEDAR detectors
 - ⇒ improve rate capability and thermal stability
- CEDAR PID requires precise measurement of beam inclination with resolution < 40 µrad ⇒ silicon beam telescope

Spectrometer

- As uniform acceptance as possible
- High-precision tracking over broad kinematic range
- New vertex detector: precise measurement of vertex position
- Improved RPD: detection of target recoil particle
 - Higher resolution of exclusivity variables

Final-state PID

• Existing RICH 1 kaon ID covers only 10

- More than 50 % of kaons in $K^-\pi^+\pi^-$ outside of acceptance
- Lower beam momentum \Rightarrow more events in RICH 1 acceptance
- *Goal*: extend kaon ID to increase acceptance ⇒ RICH 0?

Final-state PID

• Existing RICH 1 kaon ID covers only 10

- More than 50 % of kaons in $K^-\pi^+\pi^-$ outside of acceptance
- Lower beam momentum ⇒ more events in RICH 1 acceptance
- Goal: extend kaon ID to increase acceptance ⇒ RICH 0?

Electromagnetic calorimeters

- Efficient detection of photons over broad kinematic range is essential
- Gives access to interesting final states: $K^-\eta^{(\prime)}$, $K^-\pi^0\pi^0$, $K^-\omega$, ...

Work in progress

Detailed studies of experimental setup once beam energy is fixed

Electromagnetic calorimeters

- Efficient detection of photons over broad kinematic range is essential
- Gives access to interesting final states: $K^-\eta^{(\prime)}$, $K^-\pi^0\pi^0$, $K^-\omega$, ...

Work in progress

Detailed studies of experimental setup once beam energy is fixed

Conclusions

Kaon spectroscopy

- Many kaon states
 - Require further confirmation or more precise measurement of their paramaters
 - Have not yet been found

Future program

- Goal: collect data set that exceeds existing ones by at least a factor of 10 using high-intensity RF-separated kaon beam
- High physics potential: rewrite PDG for kaon states above $1.5 \,\text{GeV}/c^2$ (like LASS and WA03 did 30 year ago)
- No direct competitors
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)

Conclusions

Kaon spectroscopy

- Many kaon states
 - Require further confirmation or more precise measurement of their paramaters
 - Have not yet been found

Future program

- Goal: collect data set that exceeds existing ones by at least a factor of 10 using high-intensity RF-separated kaon beam
- High physics potential: rewrite PDG for kaon states above
 1.5 GeV/c² (like LASS and WA03 did 30 year ago)
- No direct competitors
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)

Outline

- Backup slides
 - Introduction
 - The COMPASS Experiment at the CERN SPS
 - *Example:* Analysis of $K^-\pi^+\pi^-$ Final State
 - Why do we need even larger data sets?

Outline

- Backup slides
 - Introduction
 - The COMPASS Experiment at the CERN SPS
 - *Example:* Analysis of $K^-\pi^+\pi^-$ Final State
 - Why do we need even larger data sets?

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region $m \gtrsim 2 \,\text{GeV}/c^2$
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region $m \gtrsim 2 \,\text{GeV}/c^2$
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region $m \gtrsim 2 \,\text{GeV}/c^2$
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region $m \gtrsim 2 \,\text{GeV}/c^2$
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Light-Meson Spectrum from Lattice QCD

State-of-the-art calculation with $m_{\pi}=391\,\mathrm{MeV}/c^2$

Dudek et al., PRD 88 (2013) 094505

- Essentially recovers quark-model pattern
- High towers of excited states
- Additional hybrid-meson super-multiplet

Outline

- Backup slides
 - Introduction
 - The COMPASS Experiment at the CERN SPS
 - Example: Analysis of $K^-\pi^+\pi^-$ Final State
 - Why do we need even larger data sets?

The COMPASS Experiment at the CERN SPS

Experimental Setup

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

E/HCAL2 E/HCAL1 RICE 2008, 2009

RPD + Target

Hadron spectroscopy

- 190 GeV/c secondary hadron beam
 - h^- beam: 97 % π^- , 2 % K^- , 1 % \bar{p}
- ℓH₂ target

Outline

- 5 Backup slides
 - Introduction
 - The COMPASS Experiment at the CERN SPS
 - *Example:* Analysis of $K^-\pi^+\pi^-$ Final State
 - Why do we need even larger data sets?

Example: Analysis of $K^-\pi^+\pi^-$ Final State

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. $50 \times \text{more } \pi^- \text{ than } K^- \text{ in beam}$
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. $50 \times \text{more } \pi^- \text{ than } K^- \text{ in beam}$
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. $50 \times \text{more } \pi^- \text{ than } K^- \text{ in beam}$
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. $50 \times \text{more } \pi^- \text{ than } K^- \text{ in beam}$
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

Data sample

- From 2008 data taking campaign
- 270 000 events
- $0.07 < t' < 0.7 \, (\text{GeV}/c)^2$
- Exclusivity ensured by measuring recoil proton
 - Also suppresses target excitations

Invariant Mass of $\pi^-\pi^+$ Subsystem

COMPASS: $\pi^-\pi^-\pi^+$

• $m_{\pi^-\pi^+}$ spectrum contains states already known from analysis of diffractively produced $\pi^-\pi^-\pi^+$

Invariant Mass of $K^-\pi^+$ Subsystem

- Clear $K^*(892)$ and $K_2^*(1430)$ signals
- Data set slightly larger than that of most precise previous experiment (WA03)

Invariant Mass of $K^-\pi^+\pi^-$ System

COMPASS
$$0.07 < t' < 0.7 \, (\text{GeV}/c)^2$$

WA03 (CERN) $0 < t' < 0.7 \, (\text{GeV}/c)^2$

ACCMOR, NPB 187 (1981) 1

- Various potential resonance signals
- Need partial-wave analysis (PWA) to disentangle contributions from various I^P quantum numbers

Invariant Mass of $K^-\pi^+\pi^-$ System

COMPASS $0.07 < t' < 0.7 \, (\text{GeV}/c)^2$

- Various potential resonance signals
- Need partial-wave analysis (PWA) to disentangle contributions from various I^P quantum numbers

$$\mathcal{I}(\tau; m_X) = \left| \sum_{i}^{ ext{waves}} \mathcal{T}_i(m_X) \, \mathcal{Y}_i(\tau; m_X) \right|^2$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes $\Psi_i(\tau; m_X)$

• Transition amplitudes $\mathcal{T}_i(m_X) \Rightarrow$ interesting physic

$$\mathcal{I}(\tau; m_X) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_i(m_X) \, \Psi_i(\tau; m_X) \right|^2$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes $\Psi_i(\tau; m_X)$
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner D-functions)
- Transition amplitudes $\mathcal{T}_i(m_X) \Rightarrow$ interesting physics
 - m_X dependence unknown
 - Extracted from data by performing PWA fit in narrow m_X bins

$$\mathcal{I}(\tau; m_X) = \left| \sum_{i}^{\mathrm{waves}} \mathcal{T}_i(m_X) \, \Psi_i(\tau; m_X) \right|^2$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes $\Psi_i(\tau; m_X)$
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes $\mathcal{T}_i(m_X) \Rightarrow$ interesting physics
 - m_X dependence unknown
 - Extracted from data by performing PWA fit in narrow m_X bins

$$\mathcal{I}(au; m_X) = \left|\sum_{i}^{ ext{waves}} \mathcal{T}_i(m_X) \, Y_i(au; m_X) \right|^2$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes $\Psi_i(\tau; m_X)$
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner D-functions)
- Transition amplitudes $\mathcal{T}_i(m_X) \Rightarrow$ interesting physics
 - m_X dependence unknown
 - Extracted from data by performing PWA fit in narrow m_X bins

Partial-Wave Analysis of $K^-\pi^+\pi^-$ Final State

PWA model similar to WA03

$$\mathcal{I}(au; m_X) = \left| \sum_{i}^{ ext{waves}} \mathcal{T}_i(m_X) \, \Psi_i(au; m_X) \right|^2$$

- 6 isobars
 - $\pi^-\pi^+$ subsystem: $f_0(500)$, $\rho(770)$, and $f_2(1270)$
 - $K^-\pi^+$ subsystem: $K_0^*(800)$, $K^*(892)$, and $K_2^*(1430)$
 - \bullet $K_0^*(800)$ described by Breit-Wigner amplitude
- 19 waves = combinations of X^- quantum numbers and decay modes

Results of Partial-Wave Analysis

$$1^+ \rightarrow K^*(892) + \pi^-$$
 in S-wave

 Clear signals from K₁(1270) and K₁(1400)

$$2^+
ightarrow K^*(892) + \pi^-$$
 in D -wave

- Clear signal from $K_2^*(1430)$
- $K_2^*(1980)$?

Results of Partial-Wave Analysis

$1^+ \rightarrow K^*(892) + \pi^-$ in *S*-wave

• Clear signals from $K_1(1270)$ and $K_1(1400)$

$$2^+ \to K^*(892) + \pi^- \text{ in } D\text{-wave}$$

- Clear signal from $K_2^*(1430)$
- $K_2^*(1980)$?

Intensity / 0.02 [GeV/c²]

Results of Partial-Wave Analysis

$2^ightarrow K_2^*(1430)+\pi^-$ in S-wave

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model ⇒ clearer resonance signals
- Resonance-model fit \Rightarrow extraction of $K^-\pi^+\pi^-$ resonances and their parameters

Results of Partial-Wave Analysis

$2^- ightarrow K_2^*(1430) + \pi^-$ in S-wave

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model ⇒ clearer resonance signals
- Resonance-model fit \Rightarrow extraction of $K^-\pi^+\pi^-$ resonances and their parameters

Results of Partial-Wave Analysis

$2^- o K_2^*(1430) + \pi^-$ in *S*-wave

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model \Rightarrow clearer resonance signals
- Resonance-model fit \Rightarrow extraction of $K^-\pi^+\pi^-$ resonances and their parameters

Results of Partial-Wave Analysis

$2^- o K_2^*(1430) + \pi^-$ in *S*-wave

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Further final states accessible by COMPASS

- Isospin partner channel $K^-\pi^0\pi^0$
- K⁻K⁺K⁻
- $K^-\pi^0$, $K_S^0\pi^-$, $K^-\eta^{(\prime)}$, $K^-\omega$
- **.**.

Outline

- Backup slides
 - Introduction
 - The COMPASS Experiment at the CERN SPS
 - *Example:* Analysis of $K^-\pi^+\pi^-$ Final State
 - Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \ \pi^-\pi^-\pi^+$ events \Rightarrow approx. $10 \times$ world data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \ \pi^- \pi^- \pi^+$ events \Rightarrow approx. $10 \times$ world data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \ \pi^- \pi^- \pi^+$ events \Rightarrow approx. $10 \times$ world data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Improved sensitivity for small signals

- E.g. surprising find: resonance-like $a_1(1420)$ signal in peculiar decay mode
- Only 0.3 % of total intensity

COMPASS, PRL **115** (2015) 082001

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

PWA in narrow bins of four-momentum transfer squared t'

- Resolve t' dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of t' spectra of resonances from such an analysis
 ⇒ can study production mechanism(s)

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

PWA in narrow bins of four-momentum transfer squared t'

- Resolve *t'* dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of t' spectra of resonances from such an analysis
 ⇒ can study production mechanism(s)

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Novel analysis technique "freed-isobar" PWA [arXiv:1710.09849] $\pi_{\text{beam}}^ \pi_{\text{beam}}^ \pi_{\text{beam}}^ \pi_{\text{ptarget}}^ \pi_{\text{precoil}}^-$

- Conventional PWA requires complete knowledge of isobar amplitude
- Novel approach: replace fixed parametrization by step-like function
 - Isobar amplitude determined from data ⇒ reduced model dependence
 - E.g. amplitude of $\pi^-\pi^+$ subsystem with $J^{PC} = 0^{++}$ $\Rightarrow f_0(500)$ (?), $f_0(980)$, $f_0(1500)$

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Novel analysis technique "freed-isobar" PWA [arXiv:1710.09849] π_{beam}^{-} p_{target} p_{target}

- Conventional PWA requires complete knowledge of isobar amplitude
- *Novel approach:* replace fixed parametrization by step-like function
 - Isobar amplitude determined from data ⇒ reduced model dependence
 - E.g. amplitude of $\pi^-\pi^+$ subsystem with $J^{PC} = 0^{++}$ $\Rightarrow f_0(500)$ (?), $f_0(980)$, $f_0(1500)$

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Novel analysis technique "freed-isobar" PWA [arXiv:1710.09849] $I^{PC}M^{\epsilon}$ isobar P p_{target}

- Conventional PWA requires complete knowledge of isobar amplitude
- Novel approach: replace fixed parametrization by step-like function
 - Isobar amplitude determined from $data \Rightarrow$ reduced model dependence
 - E.g. amplitude of $\pi^-\pi^+$ subsystem with $I^{PC} = 0^{++}$ $\Rightarrow f_0(500)$ (?), $f_0(980)$, $f_0(1500)$

- Would allow to study $K^-\pi^+$ subsystem with $I^{P} = 0^{+} \text{ in } K^{-}\pi^{+}\pi^{-}$
- Requires huge data samples

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\leq 100 \, \text{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \mathrm{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to $20 \times 10^6~K^-\pi^+\pi^-$ events assuming same acceptance as current experimental setup \Rightarrow would be $\approx 10 \times$ world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\lesssim 100 \,\mathrm{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \text{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to $20 \times 10^6~K^-\pi^+\pi^-$ events assuming same acceptance as current experimental setup
 - \Rightarrow would be $\approx 10 \times$ world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\lesssim 100 \,\text{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \text{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to $20 \times 10^6~K^-\pi^+\pi^-$ events assuming same acceptance as current experimental setup
 - \Rightarrow would be $\approx 10 \times$ world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment