Kaon Spectroscopy with Kaon Beam

Boris Grube

Institute for Hadronic Structure and Fundamental Symmetries
Technische Universität München
Garching, Germany

Mini Workshop for a QCD Facility at the SPS after 2021
CERN, 20. Jun 2018

COMPASS
The Quest for exotic Forms of Matter

In principle, QCD permits color-neutral meson-like states in addition to $|q\bar{q}\rangle$.

- **Quarkonia**

 $|q\bar{q}\rangle$

- **Hybrids**

 $|q\bar{q}g\rangle$

- **Glueballs**

 $|g\bar{g}\rangle$

- **Multi-quarks**

 $|q^2\bar{q}^2\rangle$

Physical mesons

- Linear superpositions of all allowed basis states

Exotic mesons

- States with small or vanishing $|q\bar{q}\rangle$ component
- Appear either as supernumerous states or mix with conventional states with same quantum numbers
In principle, QCD permits **color-neutral meson-like states** in addition to $|q\bar{q}\rangle$.

- **Physical mesons**
 - Linear superpositions of *all* allowed basis states

- **Exotic mesons**
 - States with small or vanishing $|q\bar{q}\rangle$ component
 - Appear either as supernumerous states or mix with conventional states with same quantum numbers
In principle, QCD permits color-neutral meson-like states in addition to $|q\bar{q}\rangle$

Physical mesons
- Linear superpositions of *all* allowed basis states

Exotic mesons
- States with small or vanishing $|q\bar{q}\rangle$ component
- Appear either as supernumerous states or mix with conventional states with same quantum numbers
Why Kaon Spectroscopy?

PDG 2016: 25 kaon states below 3.1 GeV/c²

- Only **12** kaon states in summary table, **13** need confirmation
- Many predicted quark-model states still missing
- Some hints for supernumerous states

![Mass Spectrum of Kaons](image-url)

[Courtesy of S. Wallner, TUM]
Why Kaon Spectroscopy?

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)$_{\text{flavor}}$ multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K_0^*(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for CP violation in multi-body decays
e.g. $B^\pm \rightarrow D^0 K^\pm$ with $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K_S^0 \pi^\pm$ subsystems
Why Kaon Spectroscopy?

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries *more than 30 years old*
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing $SU(3)_{\text{flavor}}$ multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980), K^*_0(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K^*_0(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for CP violation in multi-body decays
 - E.g. $B^\pm \rightarrow D^0 K^\pm$ with $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K^0_S \pi^\pm$ subsystems
Why Kaon Spectroscopy?

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)\text{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K^*_0(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - But $K^*_0(800)$ still disputed

Kaon spectrum required to analyze heavy-meson decays

- E.g. search for CP violation in multi-body decays
 - e.g. $B^\pm \rightarrow D^0 K^\pm$ with $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K^0_S \pi^\pm$ subsystems
Production of excited Kaons

- High-energy kaon beam on stationary target (proton or nucleus)
- Excitation of beam kaon into X via Pomeron/Reggeon exchange
- Dissociation of X into various n-body mesonic final states
 - $\pi, K, \eta, \eta', \ldots$
- Not very selective: all kaon states can appear as X
- Large cross section
How to get more Data?

Main limitation

- **Kaon content** of 190 GeV/c h^- beam from current M2 beam line
- Composition: 97% π^-, 2% K^-, 1% \bar{p}
- Intensity of K^- component at COMPASS target: 10^5 s$^{-1}$

Goal

- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $>10^7 K^- \pi^+ \pi^-$ events (assuming same acceptance as current experimental setup)
 \Rightarrow approximately $10 \times$ world data

Possible solution

RF-separated beam at M2 beam line (see talk by J. Bernhard)
How to get more Data?

Main limitation
- **Kaon content** of 190 GeV/c h^- beam from current M2 beam line
- Composition: 97% π^-, 2% K^-, 1% \bar{p}
- Intensity of K^- component at COMPASS target: 10^5 s$^{-1}$

Goal
- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $> 10^7 K^- \pi^+ \pi^-$ events
 (assuming same acceptance as current experimental setup)
 \Rightarrow approximately $10 \times$ world data

Possible solution
RF-separated beam at M2 beam line
(see talk by J. Bernhard)
How to get more Data?

Main limitation
- Kaon content of 190 GeV/c h^- beam from current M2 beam line
- Composition: 97% π^-, 2% K^-, 1% \bar{p}
- Intensity of K^- component at COMPASS target: 10^5 s$^{-1}$

Goal
- Increase intensity of kaons by factor > 10
- Would correspond e.g. to $> 10^7 K^- \pi^+ \pi^-$ events
 (assuming same acceptance as current experimental setup)
 \Rightarrow approximately $10 \times$ world data

Possible solution
RF-separated beam at M2 beam line
(see talk by J. Bernhard)
Kaon beam experiments

- **J-PARC K10 beam line**
 - Separated \bar{p} and K^- beams with 2 to 10 GeV/c and $10^7 K^-$ per spill
 - Main focus on hyperon spectroscopy, di-baryons, and study of mesons in nuclear medium
 - Low beam energy
 - Separation between beam and target excitations difficult
 - More complicated production process (various Reggeons)

- **Neutral kaon beam at GlueX (Jlab)**
 - K_L^0 beam with 0.3 to 10 GeV/c and 10^4 s$^{-1}$ intensity
 - Main focus on hyperon spectroscopy
Kaon beam experiments

- **J-PARC K10 beam line**
 - Separated \bar{p} and K^- beams with 2 to 10 GeV/c and $10^7 K^-$ per spill
 - Main focus on hyperon spectroscopy, di-baryons, and study of mesons in nuclear medium
 - Low beam energy
 - Separation between beam and target excitations difficult
 - More complicated production process (various Reggeons)

- **Neutral kaon beam at GlueX (Jlab)**
 - K_L^0 beam with 0.3 to 10 GeV/c and 10^4 s$^{-1}$ intensity
 - Main focus on hyperon spectroscopy
Competition

Decays of τ leptons or heavy mesons

- Limited mass reach for charmed mesons and τ leptons
- Mainly BESIII, Belle II, LHCb
- Current data samples typically factor 10 smaller than existing COMPASS data set

COMPASS: $K^- \pi^+ \pi^-$

![Graph showing decay of $K^- \pi^+ \pi^-$ with peaks at $K_1(1270)$, $K_1(1400)$, and $K_2(1770)$]

Belle: $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$

![Graph showing Belle data with $M(K\pi\pi)$ distribution]

Belle, PRD 83 (2011) 032005
Photoproduction: $\gamma p \rightarrow X p$

- **GlueX Phase IV** proposal (Jlab)
 - $100 \times 10^6 \ X \rightarrow KK\pi\pi$ events
 - $30 \times 10^6 \ X \rightarrow KK\pi$ events

- **Excited kaons appear in subsystems**
 - Could be extracted using **freed-isobar method**
 - More complicated compared to direct production
 - Possible distortions due to rescattering effects
 - More difficult to find new states
Requirements for experimental Setup

Beam PID

- Upgrade of CEDAR detectors
 ⇒ improve rate capability and thermal stability
- CEDAR PID requires precise measurement of beam inclination with resolution $< 40 \mu\text{rad}$ ⇒ silicon beam telescope

Spectrometer

- As uniform acceptance as possible
- High-precision tracking over broad kinematic range
- New vertex detector: precise measurement of vertex position
- Improved RPD: detection of target recoil particle
 - Higher resolution of exclusivity variables
Requirements for experimental Setup

Beam PID
- Upgrade of CEDAR detectors
 ⇒ improve rate capability and thermal stability
- CEDAR PID requires precise measurement of beam inclination with resolution < 40 µrad ⇒ silicon beam telescope

Spectrometer
- As uniform acceptance as possible
- High-precision tracking over broad kinematic range
- **New vertex detector**: precise measurement of vertex position
- **Improved RPD**: detection of target recoil particle
 - Higher resolution of exclusivity variables
Final-state PID

- Existing RICH 1 kaon ID covers only $10 < p < 50 \text{ GeV}/c$

- More than 50% of kaons in $K^- \pi^+ \pi^-$ outside of acceptance

- Lower beam momentum \Rightarrow more events in RICH 1 acceptance

- Goal: extend kaon ID to increase acceptance \Rightarrow RICH 0?
Requirements for experimental Setup

Final-state PID

- **Existing RICH 1 kaon ID covers only** $10 < p < 50 \text{ GeV/c}$

- More than 50% of kaons in $K^- \pi^+ \pi^-$ outside of acceptance
- Lower beam momentum \Rightarrow more events in RICH 1 acceptance
- **Goal:** extend kaon ID to increase acceptance \Rightarrow RICH 0?
Requirements for experimental Setup

Electromagnetic calorimeters

- Efficient detection of photons over broad kinematic range is essential
- Gives access to interesting final states: $K^- \eta^{(')}, K^- \pi^0 \pi^0, K^- \omega, \ldots$

Work in progress

Detailed studies of experimental setup once beam energy is fixed
Electromagnetic calorimeters

- Efficient detection of photons over broad kinematic range is essential
- Gives access to interesting final states: $K^-\eta^{(')}, K^-\pi^0\pi^0, K^-\omega, \ldots$

Work in progress

Detailed studies of experimental setup once beam energy is fixed
Conclusions

Kaon spectroscopy

- Many kaon states
 - Require further confirmation or more precise measurement of their parameters
 - Have not yet been found

Future program

- **Goal**: collect data set that exceeds existing ones by at least a factor of 10 using high-intensity RF-separated kaon beam
- **High physics potential**: rewrite PDG for kaon states above 1.5 GeV$/c^2$ (like LASS and WA03 did 30 year ago)
- No direct competitors
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)
Conclusions

Kaon spectroscopy

- Many kaon states
 - Require further confirmation or more precise measurement of their parameters
 - Have not yet been found

Future program

- **Goal**: collect data set that exceeds existing ones by at least a factor of 10 using high-intensity RF-separated kaon beam
- **High physics potential**: rewrite PDG for kaon states above 1.5 GeV/c^2 (like LASS and WA03 did 30 year ago)
- No direct competitors
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)
Backup slides

- Introduction
- The COMPASS Experiment at the CERN SPS
- *Example*: Analysis of $K^- \pi^+ \pi^-$ Final State
- Why do we need even larger data sets?
Backup slides

- Introduction
 - The COMPASS Experiment at the CERN SPS
 - Example: Analysis of $K^- \pi^+ \pi^-$ Final State
 - Why do we need even larger data sets?
“Light-meson frontier”

- Many states need confirmation in mass region $m \gtrsim 2$ GeV/c^2
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Main focus of current COMPASS program
Light-Meson Spectrum

“Light-meson frontier”

- Many states need confirmation in mass region \(m \gtrsim 2 \text{ GeV/c}^2 \)
- Many wide states \(\Rightarrow \) overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Main focus of current COMPASS program

[Courtesy K. Götzen, GSI]
Many states need confirmation in mass region $m \gtrsim 2 \text{ GeV}/c^2$.

- Many wide states \Rightarrow overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Main focus of current COMPASS program
“Light-meson frontier”

- Many states need confirmation in mass region $m \gtrsim 2 \text{ GeV} / c^2$
- Many wide states \Rightarrow overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Main focus of current COMPASS program

[Courtesy K. Götzen, GSI]
Essentially recovers quark-model pattern
High towers of excited states
Additional hybrid-meson super-multiplet
Backup slides

- Introduction
- The COMPASS Experiment at the CERN SPS
- Example: Analysis of $K^- \pi^+ \pi^-$ Final State
- Why do we need even larger data sets?
The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Boris Grube, TU München

Kaon Spectroscopy with Kaon Beam

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)
Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

Hadron spectroscopy 2008, 2009

- 190 GeV/c secondary hadron beam
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - ℓH_2 target
Backup slides

- Introduction
- The COMPASS Experiment at the CERN SPS
- *Example*: Analysis of $K^- \pi^+ \pi^-$ Final State
- Why do we need even larger data sets?
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

- **Diffractive production** of excited kaon states X^- that decay into $K^- \pi^+ \pi^-$
 - Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. $50 \times$ more π^- than K^- in beam
 - Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range
Example: Analysis of $K^− π^+ π^−$ Final State

- **Diffractive production** of excited kaon states $X^−$ that decay into $K^− π^+ π^−$
- **Beam-particle ID** via Cherenkov detectors (CEDARs)
 - Ca. $50 \times$ more $π^−$ than $K^−$ in beam
- **Final-state PID** via RICH detector
 - Distinguish $K^−$ from $π^−$ over wide momentum range
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

- **Diffractive production** of excited kaon states X^- that decay into $K^- \pi^+ \pi^-$
- **Beam-particle ID** via Cherenkov detectors (CEDARs)
 - Ca. $50 \times$ more π^- than K^- in beam
- **Final-state PID** via RICH detector
 - Distinguish K^- from π^- over wide momentum range

Boris Grube, TU München

Kaon Spectroscopy with Kaon Beam
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

- **Diffractive production** of excited kaon states X^- that decay into $K^- \pi^+ \pi^-$
- **Beam-particle ID** via Cherenkov detectors (CEDARs)
 - Ca. $50 \times$ more π^- than K^- in beam
- **Final-state PID** via RICH detector
 - Distinguish K^- from π^- over wide momentum range
From 2008 data taking campaign
- 270,000 events
- $0.07 < t' < 0.7 \text{ (GeV/c)}^2$
- Exclusivity ensured by measuring recoil proton
 - Also suppresses target excitations
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Invariant Mass of $\pi^- \pi^+$ Subsystem

COMPASS: $K^- \pi^+ \pi^-$

![Graph showing $K^- \pi^+ \pi^-$ analysis](image1)

COMPASS 2008 negative hadron beam

$K^- p \rightarrow K^- \pi^+ \pi^- p_{\text{recoil}}$

not acceptance corrected

$\rho(770)$, $f_0(980)$, $f_2(1270)$

COMPASS: $\pi^- \pi^- \pi^+$

![Graph showing $\pi^- \pi^- \pi^+$ analysis](image2)

$\rho(770)$, $f_0(980)$, $f_2(1270)$, $\rho_3(1690)$

COMPASS, PRD 95 (2017) 032004

$m_{\pi^- \pi^+}$ spectrum contains states already known from analysis of diffractively produced $\pi^- \pi^- \pi^+$
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Invariant Mass of $K^- \pi^+$ Subsystem

- Clear $K^*(892)$ and $K_2^*(1430)$ signals
- Data set slightly larger than that of most precise previous experiment (WA03)
Example: Analysis of $K^− π^+ π^−$ Final State

Invariant Mass of $K^− π^+ π^−$ System

COMPASS

$0.07 < t' < 0.7 \text{(GeV/c)}^2$

WA03 (CERN)

$0 < t' < 0.7 \text{(GeV/c)}^2$

Events / 10 [MeV/c^2]

- Various potential resonance signals
- Need partial-wave analysis (PWA) to disentangle contributions from various J^P quantum numbers

ACCMOR, NPB 187 (1981) 1
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Invariant Mass of $K^- \pi^+ \pi^-$ System

COMPASS

$0.07 < t' < 0.7 \text{ (GeV/c)}^2$

Various potential resonance signals

- $K_1(1270)$
- $K_1(1400)$
- $K_2(1770)$

Belle

$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$

Preliminary COMPASS 2008 negative hadron beam

$K^- p \rightarrow K^- \pi^+ \pi^- p_{\text{recoil}}$

Not acceptance corrected

Belle, *PRD 83* (2011) 032005

- Need partial-wave analysis (PWA) to disentangle contributions from various J^P quantum numbers
Partial-Wave Analysis Method

\[I(\tau; m_X) = \left| \sum_{i} \mathcal{T}_i(m_X) \Psi_i(\tau; m_X) \right|^2 \]

- **Ansatz**: Factorization of production and decay

- **Fit model**: coherent sum of partial-wave amplitudes
- **Decay amplitudes** \(\Psi_i(\tau; m_X) \)
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner \(D \)-functions)
- **Transition amplitudes** \(\mathcal{T}_i(m_X) \Rightarrow \) interesting physics
 - \(m_X \) dependence unknown
 - Extracted from data by performing PWA fit in narrow \(m_X \) bins
Ansatz: Factorization of production and decay

\[\mathcal{I}(\tau; m_X) = \left| \sum_i \mathcal{T}_i(m_X) \Psi_i(\tau; m_X) \right|^2 \]

- **Fit model:** coherent sum of partial-wave amplitudes
- **Decay amplitudes** \(\Psi_i(\tau; m_X) \)
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner \(D \)-functions)
- **Transition amplitudes** \(\mathcal{T}_i(m_X) \) ⇒ interesting physics
 - \(m_X \) dependence unknown
 - Extracted from data by performing PWA fit in narrow \(m_X \) bins
Ansatz: Factorization of production and decay

\[\mathcal{I}(\tau; m_X) = \left| \sum_{i} \mathcal{T}_i(m_X) \Psi_i(\tau; m_X) \right|^2 \]

- **Fit model:** coherent sum of partial-wave amplitudes
- **Decay amplitudes** \(\Psi_i(\tau; m_X) \)
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner \(D \)-functions)
- **Transition amplitudes** \(\mathcal{T}_i(m_X) \Rightarrow \) interesting physics
 - \(m_X \) dependence unknown
 - Extracted from data by performing PWA fit in narrow \(m_X \) bins
Ansatz: Factorization of production and decay

\[I(\tau; m_X) = \left| \sum_i^{\text{waves}} T_i(m_X) \Psi_i(\tau; m_X) \right|^2 \]

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes \(\Psi_i(\tau; m_X) \)
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model and helicity formalism (Wigner D-functions)
- Transition amplitudes \(T_i(m_X) \) ⇒ interesting physics
 - \(m_X \) dependence unknown
 - Extracted from data by performing PWA fit in narrow \(m_X \) bins
Partial-Wave Analysis of $K^- \pi^+ \pi^-$ Final State

PWA model similar to WA03

$$\mathcal{I}(\tau; m_X) = \left| \sum_i \mathcal{T}_i(m_X) \Psi_i(\tau; m_X) \right|^2$$

- 6 isobars
 - $\pi^- \pi^+$ subsystem: $f_0(500)$, $\rho(770)$, and $f_2(1270)$
 - $K^- \pi^+$ subsystem: $K^*_0(800)$, $K^*(892)$, and $K^*_2(1430)$
 - $K^*_0(800)$ described by Breit-Wigner amplitude
- 19 waves = combinations of X^- quantum numbers and decay modes
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Results of Partial-Wave Analysis

$1^+ \rightarrow K^*(892) + \pi^-$ in \textit{S}-wave

- Clear signals from $K_1(1270)$ and $K_1(1400)$

$2^+ \rightarrow K^*(892) + \pi^-$ in \textit{D}-wave

- Clear signal from $K_2^*(1430)$
- $K_2^*(1980)$?
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Results of Partial-Wave Analysis

Clear signals from $K_1(1270)$ and $K_1(1400)$

Clear signal from $K_2^*(1430)$

$K_2^*(1980)$?
Example: Analysis of \(K^- \pi^+ \pi^-\) Final State

Results of Partial-Wave Analysis

![Graph showing the analysis of the \(K^- \pi^+ \pi^-\) final state.](image)

2\(^-\) → \(K^*_{2}(1430)\) + \(\pi^-\) in S-wave

- Possible signals from \(K_2(1770)\) and \(K_2(1820)\)
- \(K_2(1580)\) and \(K_2(2250)\)?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - ⇒ ca. 800 000 \(K^- \pi^+ \pi^-\) events
 - ⇒ world’s largest data set (4× WA03)
- Improved PWA model ⇒ clearer resonance signals
- Resonance-model fit ⇒ extraction of \(K^- \pi^+ \pi^-\) resonances and their parameters
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Results of Partial-Wave Analysis

COMPASS 2008

$K^- p \rightarrow K^+ \pi^- p$

$0.07 \text{ GeV}^2/c^2 < t' < 0.7 \text{ GeV}^2/c^2$

$2^- 0^+ K_2^*(1430)[02] \pi^-$

$2^- \rightarrow K_2^*(1430) + \pi^-$ in S-wave

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 ⇒ ca. 800 000 $K^- \pi^+ \pi^-$ events
 ⇒ world’s largest data set ($4 \times$ WA03)

- Improved PWA model ⇒ clearer resonance signals

- Resonance-model fit ⇒ extraction of $K^- \pi^+ \pi^-$ resonances and their parameters
Example: Analysis of $K^- \pi^+ \pi^-$ **Final State**

Results of Partial-Wave Analysis

\[
2^- \rightarrow K^*_2(1430) + \pi^- \text{ in } S\text{-wave}
\]

- Possible signals from $K_2(1770)$ and $K_2(1820)$
- $K_2(1580)$ and $K_2(2250)$?

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 \[\Rightarrow \text{ca. 800 000 } K^- \pi^+ \pi^- \text{ events}\]
 \[\Rightarrow \text{world’s largest data set (4× WA03)}\]
- Improved PWA model \[\Rightarrow \text{clearer resonance signals}\]
- Resonance-model fit \[\Rightarrow \text{extraction of } K^- \pi^+ \pi^- \text{ resonances and their parameters}\]
Example: Analysis of $K^- \pi^+ \pi^-$ Final State

Results of Partial-Wave Analysis

COMPASS 2008

$K^- p \rightarrow K^- \pi^+ p$

$0.07 \text{ GeV}^2/c^2 < t' < 0.7 \text{ GeV}^2/c^2$

$^2O^+ K_2^*(1430)[02] \pi^-$

Further final states accessible by COMPASS

- Isospin partner channel $K^- \pi^0 \pi^0$
- $K^- K^+ K^-$
- $K^- \pi^0, K_S^0 \pi^-, K^- \eta^{(')}, K^- \omega$
- ...

Possible signals from $K_2(1770)$ and $K_2(1820)$

- $K_2(1580)$ and $K_2(2250)$?
Backup slides

- Introduction
- The COMPASS Experiment at the CERN SPS
- *Example:* Analysis of $K^- \pi^+ \pi^-$ Final State
- **Why do we need even larger data sets?**
Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

$\pi^-_{\text{beam}} \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$
Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

- $50 \times 10^6 \pi^- \pi^- \pi^+ \text{ events} \Rightarrow \text{approx. } 10 \times \text{world data}$
Why do we need even larger data sets?

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

\[\begin{align*}
\pi^-_{\text{beam}} & \rightarrow X^- \\
\pi^- & \rightarrow \pi^- \pi^- \pi^+ \\
\rho_{\text{target}} & \rightarrow X^- \\
p_{\text{recoil}} & \rightarrow \pi^- \pi^- \pi^+
\end{align*} \]

- \(50 \times 10^6 \pi^- \pi^- \pi^+ \text{ events} \Rightarrow \text{approx. } 10 \times \text{world data} \)
Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Improved sensitivity for small signals
- E.g. surprising find: resonance-like $a_1(1420)$ signal in peculiar decay mode
- Only 0.3% of total intensity

![Graph showing data points and curves labeled (1), (2), and (3).](image)

1$^{++0^+}$ $f_0(980)$ πP

$0.1 < t' < 1.0$ (GeV/c)2

(1) Model curve
(2) $a_1(1420)$ resonance
(3) Non-resonant term

COMPASS, PRL 115 (2015) 082001
Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

PWA in narrow bins of four-momentum transfer squared t'

- Resolve t' dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of t' spectra of resonances from such an analysis
 \Rightarrow can study production mechanism(s)
Why do we need even larger data sets?

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

PWA in narrow bins of four-momentum transfer squared \(t' \)

- Resolve \(t' \) dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of \(t' \) spectra of resonances from such an analysis \(\Rightarrow \) can study production mechanism(s)
Why do we need even larger data sets?

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

Novel analysis technique
“freed-isobar” PWA

Conventional PWA requires complete knowledge of isobar amplitude

Novel approach: replace fixed parametrization by step-like function

- Isobar amplitude determined from data \(\Rightarrow \) reduced model dependence
- E.g. amplitude of \(\pi^- \pi^+ \) subsystem with \(J^{PC} = 0^{++} \)
 \(\Rightarrow f_0(500) (\text{?}), f_0(980), f_0(1500) \)
Why do we need even larger data sets?

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

Novel analysis technique

“freed-isobar” PWA

[arXiv:1710.09849]

- Conventional PWA requires complete knowledge of isobar amplitude

- Novel approach: replace fixed parametrization by step-like function

 Isobar amplitude determined from data ⇒ reduced model dependence

 E.g. amplitude of \(\pi^- \pi^+ \) subsystem with \(J^{PC} = 0^{++} \)

 ⇒ \(f_0(500) \) (?), \(f_0(980) \), \(f_0(1500) \)
Why do we need even larger data sets?

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Novel analysis technique
“freed-isobar” PWA

Conventional PWA requires complete knowledge of isobar amplitude

Novel approach: replace fixed parametrization by step-like function
- Isobar amplitude determined from data ⇒ reduced model dependence
- E.g. amplitude of $\pi^- \pi^+$ subsystem with $J^{PC} = 0^{++}$
 ⇒ $f_0(500)$ (?), $f_0(980)$, $f_0(1500)$

Would allow to study $K^- \pi^+$ subsystem with $J^P = 0^+$ in $K^- \pi^+ \pi^-$

Requires huge data samples

COMPASS, PRD 95 (2017) 032004

$0^{-+}0^+ [\pi\pi]_0^+, \pi S$

$0.194 < t' < 0.326 \ (\text{GeV}/c)^2$

$1.78 < m_{3\pi} < 1.82 \ (\text{GeV}/c)^2$

$|T^*| \approx 0.925$

$|T^*| \approx 0.925$
Possible beam parameters

- Lower beam momentum $\lesssim 100 \text{ GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \text{ s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to $20 \times 10^6 K^−\pi^+\pi^−$ events assuming same acceptance as current experimental setup
 \Rightarrow would be $\approx 10 \times$ world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment
RF-separated Kaon Beam

Possible beam parameters

- **Lower beam momentum** $\lesssim 100 \text{ GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- **Estimated kaon intensity**: $3.7 \times 10^6 \text{ s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to $20 \times 10^6 K^-\pi^+\pi^- \text{ events}$ assuming same acceptance as current experimental setup
 - \Rightarrow would be $\approx 10 \times \text{ world data}$

- More detailed studies needed to determine beam parameters more precisely
- Requires major investment
RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum \(\lesssim 100 \text{ GeV}/c \)
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: \(3.7 \times 10^6 \text{ s}^{-1} \)
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to \(10 \times 20 \times 10^6 K^- \pi^+ \pi^- \) events assuming same acceptance as current experimental setup
 \(\Rightarrow \) would be \(\approx 10 \times \) world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment