Multimessenger astrophysics

Studying the extreme Universe – recent trends and latest results

Astroparticle physics and the non-thermal Universe

Origin of cosmic rays?

Particle acceleration to 10²⁰ eV?

Impact of relativistic particles on evolution of the Universe?

Origin of astrophysical neutrinos?

Origin of dark matter?

AGNs, SNRs, GRBs.. black holes Neutrinos

The Messengers

AGNs, SNRs, GRBs.. black holes **Neutrinos**

The Multimessenger sky

Gamma rays

2017 / 2018

The multimessenger era starts

Binary neutron-star mergers

Expected electromagnetic emission

- Binary NS mergers believed to be sources of GWs
 & progenitors of short GRBs
- Prompt phase (0.1 2 seconds)
 - Internal shocks in jet → particle acceleration
 - Hard X-ray and soft gamma-ray production
- Delayed phase (hours to days to years)
 - Optical and radio emission from jet-ISM interaction

Binary neutron-star mergers

Expected electromagnetic emission

- Binary NS mergers believed to be sources of GWs
 & progenitors of short GRBs
- Prompt phase (0.1 2 seconds)
 - Internal shocks in jet → particle acceleration
 - Hard X-ray and soft gamma-ray production
- Delayed phase (hours to days to years)
 - Optical and radio emission from jet-ISM interaction
 - Optical emission from Kilonova
 - Sub or trans-relativistic speeds of ejecta
 - Ejected energy of $10^{48} 10^{50}$ erg
- → Optical, IR and UV emission from Kilonova
- → Good conditions for particle acceleration
- → Predicted radio and X-ray emitters

GW/EM170817

- Gravitational Wave detection
 - August 17th 2017: GW detected in both LIGO detectors
 - Automatic classification algorithms suggest NS-NS merger
 - Alert distributed to partners ~5 hours after inital detection
- Multiwavelength / Multimessenger follow-up
 - GRB signal detected in Fermi-GBM and INTEGRAL 2s after
 - Largest astronomical follow-up campaign of all times (1/3 of worldwide community)
 - Counterpart detected in optical, UV, infrared
 - Gamma rays produced in shock-breakout in this scenario
 - r-process elements forged in ejected material hours after merger

The 'late-time' follow-up of EM170817

What can we learn from MWL measurements

Radio and X-rays

- 10x flux increase over 150 days
- Turnover after 220 260 days
- Electrons are accelerated efficiently
- Acceleration in strong shock

TeV gamma rays, neutrinos & cosmic-rays?

- Good conditions for gamma-ray and neutrino production → no signal seen (yet)
- Long-term follow-up with H.E.S.S.
- Imaging Atmospheric Cherenkov Telescopes can constrain B-field in ejecta

IceCube-170922A

The neutrino detection and EM follow-up

- IceCube detection
 - 290 TeV neutrino detected on September 22nd 2017
 - Alert distributed to all partners within 45 s

IceCube++ (2018)

- Multiwavelength / Multimessenger follow-up
 - MWL campaign from radio to gamma-rays initiated
 - TeV observations with H.E.S.S., MAGIC & VERITAS
 - Association with GeV bright blazar TXS 0506+056 in
 Fermi-LAT archival data a week after
 - MAGIC detection ~1 week after neutrino alert

IceCube-170922A

Source properties and association

- TXS 0506+056 characteristics
 - A blazar in an elevated state in almost all wavelengths
 - One of the brightest Fermi-LAT blazars
 - In extended flaring state since ~6 months
 - Redshift of 0.33 (gamma-ray absorption >100 GeV)
- Probability for association

 Strong indications for association between neutrino and flaring blazar at >3 sigma level

What else

>3 sigma excess seen in IceCube archival data

DESY. Multimessenger astrophysics | Stefan Ohm

log₁₀ p

IceCube-170922A

Interpretation

- Pure hadronic models don't work
- Hybrid models can explain EM emission and neutrino
- ~0.25 neutrinos per year predicted by model

keV

GeV

TeV

PeV

DESY. Multi

Summary and Outlook

• Different messengers probe different physics on different scales

- Multimessenger astrophysics allows us to
 - Probe the most extreme phenomena in the Universe
 - Combine the pro's and mediate the con's of different messengers
- Multimessenger astrophysics and time-domain science requires different thinking
- Instruments:
 - LIGO/VIRGO will be turned on for O3 in early 2019 → boost in sensitivity and hence rate of mergers
 - IceCube working on extension of detector (IceCube-Gen2, including PINGU)
 - In gamma-rays, CTA will revolutionize our view of the TeV gamma-ray sky

DESY. Multimessenger astrophysics | Stefan Ohm

Spares

DESY. Multimessenger astrophysics | Stefan Ohm

IceCube

- IceCube
 - continuous data taking since 2010
 - Gives access to astrophysical neutrinos (est. 2013)
 - most sensitive to northern-hemisphere sources
 - 10 TeV 10 PeV energies
- Origin of astrophysical neutrinos
 - consistent with isotropy → extragalactic sources
 - limits on populations of sources
 - first hints for identified counterpart

The binary neutron-star merger GW/EM170817

Prompt and delayed emission

- Origin of the prompt EM emission consistent with
 - NS-NS merger event propelled material into intramerger medium
 - wide-angle jet inflates ejecta forming a cocoon
 - γ-rays produced in shock-breakout in this scenario
 - r-process elements forged in ejected material hours after merger
- → Emission traced in optical and soft γ rays
- Non-thermal emission and long-term behaviour
 - speeds of $0.1 0.3 c \rightarrow \text{strong shocks}$
 - ejected mass of few 10⁻² $\rm M_{\odot} \rightarrow \rm baryon\text{-}rich\ material}$
- → Good conditions for particle acceleration and γ-ray and neutrino emission

The EM follow-up of GW/EM170817

History

The 'early' follow-up of GW/EM170817

Optical

- ZTF was not yet online
- MK, AF & JN involved in ePESSTO follow-up
- Emission established to be of kilonovae origin

DESY. | DESY-Zeuthen GW activities | Stefan Ohm, 06.04.18

Neutrinos + UHECRs

- ANTARES, IceCube and Auger search did not reveal counterpart within ±500s of merger
- Neutrino provides direction and gives insight into source environment

LIGO, Virgo, Auger, ANTARES, IceCube, ApJ 850 (2017)

VHE γ rays

- H.E.S.S. covers uncertainty region 5 hours after event
- 1st ground-based pointing telescope to cover NS-NS merger
- no detection

H.E.S.S. paper on GW170817

The 'late-time' follow-up of GW/EM170817

What can we learn from MWL measurements

- Radio and X-rays
 - spectral index of non-thermal electrons consistent with $\Gamma_e \sim -2.0$
 - → acceleration in strong shock
 - steady increase in flux from 10 –
 150 days after merger
 - peak in radio at 150 ± 2 days
 - indications for turnover in X-rays as well
- Possible Interpretation
 - ejecta decelerating ~now

- GeV γ-rays
 - no detection of emission after original discovery of prompt GRB emission

- VHE γ-ray
 - Expected peak in γ-ray SED between 100 – 500 GeV
 - Sensitivity of H.E.S.S.: ~2 * 10⁻¹³ erg cm⁻² s⁻¹
 - Data currently being taken and/or under calibration and analysis

