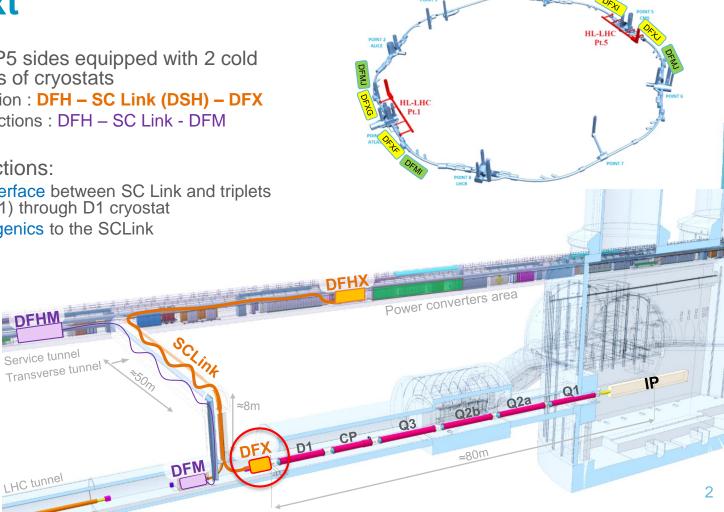


DFX functional specifications

DFX concept meeting : Collaboration meeting SOTON-CERN 21 June 2018

Y.Leclercq on behalf of the DF cryostats design team (WP6a) WP6a workpackage leader : A. Ballarino / Deputy : V. Parma


Context

- Each IP1 and IP5 sides equipped with 2 cold powering chains of cryostats
 - Triplet insertion : DFH SC Link (DSH) DFX
 - Matching sections : DFH SC Link DFM
- DFX basic functions:
 - Electrical interface between SC Link and triplets string (Q1-D1) through D1 cryostat
 - Supply cryogenics to the SCLink

LHC tunnel

Illustration of the position of the DFX (not latest version for details)

LHC

DFX environment

DFX boxes:

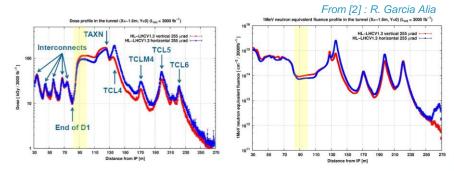
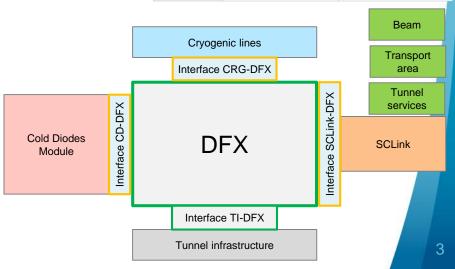
- Shall be identical in all locations
- Prototype shall be used as spare

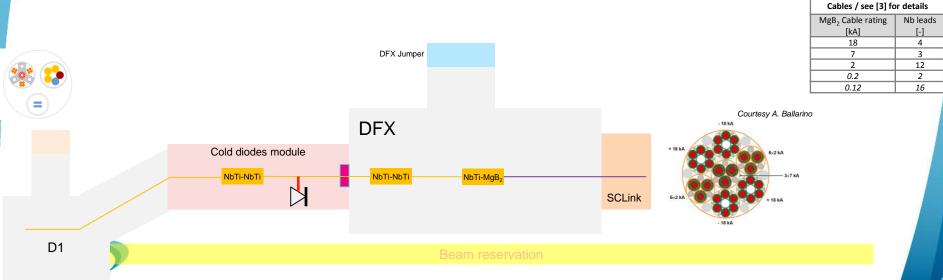
Resistance to radiation:

- The DFX shall be designed to withstand the total integrated dose over the HL-LHC life time, [2]:
 - 100kGy @ 1.6m
 - 1.2 MGy @ 30cm distance
- <u>ALARA principle as key argument for</u> the design.

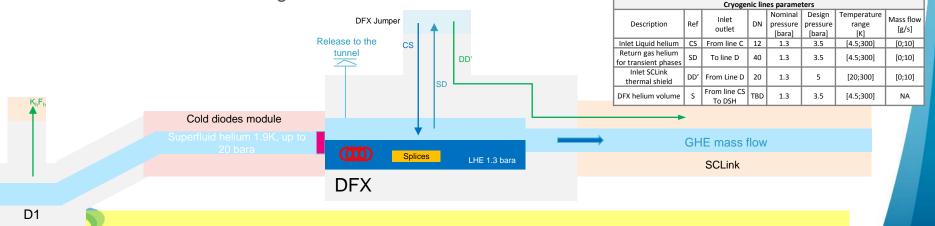
DFX boundaries:

- Cold diodes module interface
- SCLink interface
- Cryogenic interface
- Supporting system

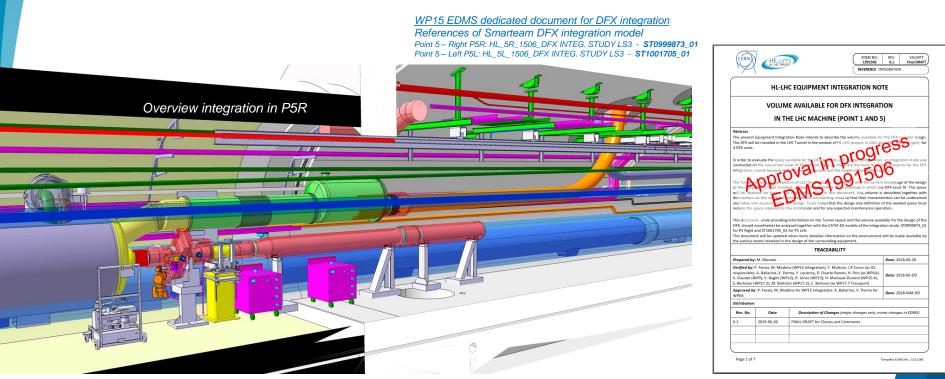




Fig. 10. Calculated dose in air and 1-MeV neg profile in the HL-LHC tunnel at beam height and 1.6 m from the beam, for the full 3000-3000-hp⁻¹ expected lifetime. Simulations include both horizontal (IP5) and vertical (IP1) beam crossing, a crossing angle of 255 μ rad and optics version 1.3. The TAXN corresponds to an absorber for neutral collision debris.

Preliminary estimations	y = 30cm	y = 60cm
z = 80m	30 kGy, 2×10 ¹⁵ n/cm ²	15 kGy, 10 ¹⁵ n/cm ²
z = 85m	240 kGy, 6×10 ¹⁴ n/cm ²	120 kGy, 3×10 ¹⁴ n/cm ²
z = 90m	1.2 MGy, 6×10 ¹⁴ n/cm ²	600 kGy, 3×10 ¹⁴ n/cm ²


Electrical functional specifications

- The DFX shall:
 - Ensure the continuity of electrical circuits between triplets and SCLink leads
 - Ensure the integrity of cables and insulation.
 - Ensure access for NbTi-NbTi splicing during installation and maintenance


Cryogenics functional specifications

- ALARA principle: → simplification of layouts and time optimisation for future interventions
- Temperature of splices maintained by immersion in liquid helium
- Supply of gaseous mass flow to SCLink by vaporisation of the liquid
- Safety : helium pressure relief device covers DFX + SCLink helium volume
- Instrumentation principle:
 - Free of cryogenic valves
 - Monitoring and controlled loop with Temperature, Pressure and liquid level sensors
- DFX heat transfer design focused on condensation limitation on the outer vessel

Integration functional specifications

DFX available envelope : defined by WP15 / EDMS1991506
 Interferences or additional requests can be addressed and will be discussed

Integration functional specifications

Waving system : adjust SCLink ends location

Distance to IP

- DFX environment design is in progress and evolves
 The DFX design shall adapt without physical change to position of diodes module and pit interfaces tolerances
 - → Distance between CDM and SCLink interfaces shall be fixed and identical for all DFX

DFX maximum envelope

Beam line reservation

Vacuum supports and equipment underneath the beam line

/ m ± 2m

SC Link

93.25m ±1m

"Waving System" ensures the SCLink ends fine location

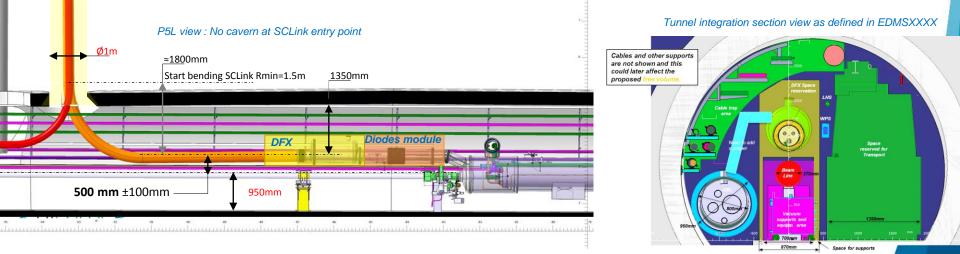
Diodes module

BPM

Vacuum⁵racks

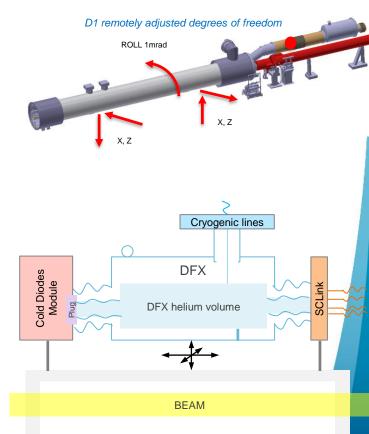
86.25m ±1m

Sector valve


HIS

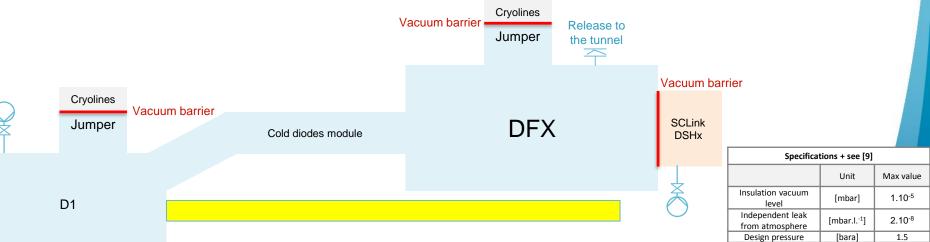
WPS

D1


Integration functional specifications

- Installation sequence:
 - Same tooling for all (identical) DFX
 - Flexibility defined in EDMS1991506
 - Not fixed yet, open to discussion
 - LHS, WPS, transport reservations can be used for installation
 - Vacuum and beam line reservations may be used during installation upon request and discussions

Mechanical functional specifications


- The DFX shall :
 - Be externally static during transient and pressure fluctuation
 - Be independent from yearly triplet re-alignment (ALARA)
 - Minimise loads and vibration transfer to magnets
 - Present flexibility toward diodes module
 - be fixed, monitored and adjustable to ground (±20mm)
 - Minimise mechanical solicitations to the cables passing through the plug
 - Present flexibility toward SCLink to ensure interfacing
 - Co-design a fixed point for the MgB₂ cable bundle at the SCLink-DFX interface

Insulation vacuum functional specifications

- The DFX :
 - Shares the insulation vacuum of the triplet magnets (ALARA)
 - Shall present surface finish, leak tight design and cleaning processes adapted to vacuum level
- Vacuum barriers:
 - of the jumper is not part of the DFX
 - at the SCLink interface shall result from co-design for its integration

Leak tight closure

ISO flange

[-]

Maintainability functional specifications

- All inspections and maintenance operations must be designed under the ALARA principle (time, waste)
- → optimise access for inspection and maintenance
- → minimise number of operations
- > prefer automated tools, light parts

As Low As Reasonably Achieveable

- The DFX shall :
 - Optimised inspections for the instrumentation interfaces
 - Optimise safety relief devices regular maintenance (pumps if applicable)
 - Allow in-situ replacement of the plug
 - Allow in-situ replacement of the heater
 - Allow repair of NbTi splices around the plug
- In situ repair of MgB₂-NbTi splices shall be evaluated and discussed.

Quality assurance : overview

- DFX design, manufacturing, qualification shall comply with:
 - CERN safety rules : GSI-M4 [10]
 - "The manufacture [...] by collaborating institutions, of all new cryogenic equipment shall comply with the applicable CERN Safety Rules, European directives and harmonised standards"
 - Pressure European Directive 2014/68/EU (PED)
 - Relevant standards on European standard for electrical devices
 - HL-LHC QA specific requirements:
 - Material (inclusion and content)
 - Manufacturing and inspection process (specific inspections)
 - Archiving in MTF database

Quality assurance : documentation

Design phase

- Drawings according to ISO-GPS,
- Design and calculation reports acc. standards
- Safety file : (risk analysis, safety devices sizing)
- CERN approval

Procurement

- Technical specifications mentioning PED, HL-LHC QA and CE requirements
- CERN approval
- Procurement process

Manufacturing

- MIP, welding book, cleaning, inspection procedures, manufacturing drawings
- CERN approval
- Manufacturing process
 Inspection reports (including certifications)
- CERN approval

Assembly & qualification phase

- Assembly procedures / Inspection and qualification plan
- CERN assembly approval
- Assembly process
 Inspection reports

QA follow-up

- Upload documentation to MTF database for each item
- Detailed installation and maintenance procedures
- CERN QA approval

Delivery to CERN

Packing & shipping to CERN

Non exhaustive list of QA requirements for illustration

	Design			Procurement			Manufacturing, Assembly and qualification													QA			
	Design report	S	afety file		g CE certif.		Pressure test procedure				We	lding	Weld inspection				Leak test		Cleaning		Proc	Procedures	
	Thermo-mech. Fluid mech.		Pressure relief device design	Manufacturing drawings				Material	Manuf. & Inspec. Plan	Dimensional report	Welder	Procedure	NDT personel	Visual inspection	X-ray proc.	X-ray result	Procedure	Operator	Procedure	MTF archiving	Installation	maintenance	
Standard	EN13445-3 EN13458-2	NA	ISO21013-3 EN4126-6	ISO-GPS	PED	EN13445 EN14917+A1	EN13458-2	EN10028 HL-LHC_QA	NA	NA	ISO 9606-1 ISO14732	ISO 15614-1	ISO 9712 NDT level2	ISO 17637	ISO 17636		EN1779A1 EN13185	ISO 9712 Level2	EN12300	NA	NA	NA	
Qualification by notified body					(X)	(X)					х	х	x					x					
Components																							
Vacuum vessel	х	x	X	х				х	x	х	X	х	X	Х	х	X	X	х	х	X		х	
Bellows vacuum				х		X		Х		х			(X)	(X)	(X)	(X)	Х	X	х	X			
Helium vessels	х		X	x	X	X	х	x	x	x	X	х	x	X	х	X	X	X	х	X		х	
Bellows helium				х	Х	х	х	х		х	Х	х	X	Х	(X)	(X)	X	х	х	X	x		
Thermal shield	х			x				x		x	Х	x	X	X	х	x	X	X	X	X			
MLI				x				х		x										(X)			
Structural supports	х			X				x		X									X	(X)			

References

- [2]: R.Garcia et al. "LHC and HL-LHC: Present and Future Radiation Environment in the High-Luminosity Collision Points and RHA Implications", <u>NSREC2017</u>
- [3]: A.Ballarino, S.Yammine "Number of components and current rating of the current leads and superconducting cables feeding the HL-LHC triplets and D1", <u>EDMS1821907</u>.
- [5]: D.Berkowitz "Process flow diagram of HL-LHC IT.R5 (Inner Triplet) including SC link and DFX box.", <u>EDMS1736906</u>
- [6]: I.Bejar Alonso, L.Rossi "HiLumi LHC Technical Design Report", <u>CERN-ACC-2015-0140</u>,
- [7]: D.Berkowitz "Preliminary naming, operational parameers and flow diagrams of the cryogenic distribution lines for HL-LHC", <u>EDMS1573115</u>.
- [9]: J.Hansen et al. "Specification for mechanical assemblies or sub-assemblies exposed to insulation vacuum", <u>EDMS1585240</u>.
- [10] : CERN rules : HSE department : <u>GSI-M-4</u> Cryogenic equipment <u>https://espace.cern.ch/safety-rules-regulations/</u>

List of items supplied by CERN

- Instrumentation layout proposed by SOTO, approved by CERN
- QA procedures (pin layout, test procedures, inspection steps, travellers) supplied by CERN
- Components supplied by CERN, installed and tested by SOTON:
 - Instrumentation & Hardware
 - Wired level gauges
 - Pressure transducers
 - Wired calibrated temperature sensors mounted on CERN type supports
 - Heaters (controls ?)
 - Fully qualified plug equipped with bus bars if needed
 - Cryogenic safety pressure relief devices (based on SOTON sizing and risk analysis)
 - Survey targets to be installed on vacuum vessels

