Updated picture of B-anomalies after Moriond

Joaquim Matias

in collaboration with: M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Virto.

Portoroz, 16th April 2019

Is it time to move to gravitational waves?

Joaquim Matias

in collaboration with: M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Virto.

Outline & Questions

- 1. Diagnosis of anomalies: Where we stand?
- 2. A comparative study of Pre and Post Moriond -Are now all the global significances smaller?
 - -Are new emerging hypothesis?
- 3. Lepton Flavour Universal (LFU) New Physics -Two kinds of New Physics? Maybe two scales?
- 4. Linking charge, neutral and LFU New Physics.
- 5. Conclusions

Diagnosis of anomalies in $b \to s \ell \ell$

[SDG,JM,JV,1207.2753]

Angular optimized observables

Theory: I-QCDF+SFF+KMPW+p.c.

$$P_5' = J_5/2\sqrt{-J_{2s}J_{2c}} = P_5^{\infty} (1 + \mathcal{O}(\alpha_s \xi_{\perp}) + \text{p.c.})$$

Impact of an improvement on KMPW-FF errors (50%):

• Optimized observable P_5' (% present error size)

$$P_{5[4,6]}'=-0.82\pm0.08 ({\bf 10\%}) \to 0.06 ({\bf 8\%})$$
 \to interestingly BSZ-FF+full-FF approach finds 0.05

• Non-optimized observable S_5 $S_{5[4,6]} = -0.35 \pm 0.12 (34\%) \rightarrow 0.06 (17\%)$

LHCb: 1/fb with 3.7 σ and 3/fb 2 bins with 3 σ each **Belle** consistent with LHCb [4,8] **ATLAS** observed the tension.

CMS compatible with our SM-prediction

(Suggestions: extract correlations of F_L and P₁, P₅' from same PDF;
Use analytical integration of 3D PDFs instead of numerical with RooFit)

[SDG,JM,JV,1207.2753]

Angular optimized observables

Theory: I-QCDF+SFF+KMPW+p.c.

$$C_{9i}^{\mathrm{eff}}(q^2) = \mathbf{C_{9}}_{\mathrm{SMpert}} + C_{9}^{\mathrm{NP}} + \mathbf{s_i} \delta \mathbf{C_{9i}^{c\bar{c}LD}}(\mathbf{q^2}).$$

$$C_{9}^{\mathrm{SM}} + Y(q^2)$$
LCSR to estimate long-distance with soft-gluon exchange.
$$4\text{-quark op.}$$

$$O_{1-6} + O(\alpha_{\mathrm{s}})$$

$$P_5' = J_5/2\sqrt{-J_{2s}J_{2c}} = P_5^{\infty} (1 + \mathcal{O}(\alpha_s \xi_{\perp}) + \text{p.c.})$$

Impact of an improvement on KMPW-FF errors (50%):

• Optimized observable P_5' (% present error size)

$$P_{5[4,6]}'=-0.82\pm0.08 ({\bf 10\%}) \to 0.06 ({\bf 8\%})$$
 \to interestingly BSZ-FF+full-FF approach finds 0.05

• Non-optimized observable S_5 $S_{5[4,6]} = -0.35 \pm 0.12 (34\%) \rightarrow 0.06 (17\%)$

LHCb: 1/fb with 3.7 σ and 3/fb 2 bins with 3 σ each **Belle** consistent with LHCb [4,8] **ATLAS** observed the tension.

CMS compatible with our SM-prediction

(Suggestions: extract correlations of F_L and P_1 , P_5 ' from same PDF;

Use analytical integration of 3D PDFs instead of numerical with RooFit)

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic)

Bobeth et al.'18

Diff. Branching Ratios: Lepton Flavour Dependent

Systematic deficit in muonic channels at large and low-recoil

Possible caveat: In some muonic channels first bin is SM-like

This is **OK** if also electronic channel is SM-like (C7 dominated). Radiative constraints are tight.

also 1st bins of opt. obs. in mild tension

$B_s \rightarrow \phi \mu \mu \ vs \ B \rightarrow K^* \mu \mu$: Lepton Flavour Dependent

Tension at large and low recoil of

 $B(B_s \rightarrow \varphi \mu \mu) \times 10^7$

Pred. using our approach with BSZ-FF:

	SM	EXP	PULL
[0.1,2]	1.55±0.34	1.11±0.16	+1.2
[2,5]	1.55±0.33	0.77±0.14	+2.2
[5,8]	1.88±0.39	0.96±0.15	+2.2
[15,19]	2.20±0.17	1.62±0.20	+2.2

with corrected BSZ FF

Not yet significant: FF at low-q² for $B_s \rightarrow \phi$ (BSZ) larger than $B \rightarrow K^*$, while data is reversed. Ok at high-q². BSZ problem or statistical fluctuation? Our prediction for $B \rightarrow K^*$ with KMPW has larger errors so no problem in our case.

More data will clarify it....

R_K: Lepton Flavour Universality Violation

FCNC, test of universality of lepton coupling, potential high sensitivity to NP contributions.

First possible signal of LFUV ... after LHCb update

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

still at 2.50 from SM

Simple structure of BR: $f_{+,0,T} o f_+$

dominates while the other two suppressed by lepton mass or C_7 .

- => Good observable in presence NP
- => tensions cannot be explained by FF or charm. Electromagnetic small.

[Isidori et al.]

Does a more SM-like central value imply a reduction in significance?

R_K: Lepton Flavour Universality Violation

FCNC, test of universality of lepton coupling, potential high sensitivity to NP contributions.

First possible signal of LFUV ... after LHCb update

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

Simple structure of BR: $f_{+,0,T} \rightarrow f_{+}$

dominates while the other two suppressed by lepton mass or C_7 .

- => Good observable in presence NP
- => tensions cannot be explained by FF or charm. Electromagnetic small.

[Isidori et al.]

Does a more SM-like central value imply a reduction in significance?

R_{K*}: Lepton Flavour Universality Violation

FCNC, second test of universality of lepton coupling.

$$R_{K^*} = \frac{Br(B^0 \to K^{*0}\mu^+\mu^-)}{Br(B^0 \to K^{*0}e^+e^-)}$$

pulls	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$
Exp.	$0.66^{+0.113}_{-0.074}$	$0.685^{+0.122}_{-0.083}$
SM	0.92 ± 0.02	1.00 ± 0.01

different mechanisms?

Belle combined data on charged and neutral channels:

$$R_{K^*}^{[0.045,1.1]} = 0.52_{-0.26}^{+0.36} \pm 0.05$$

$$R_{K^*}^{[1.1,6]} = 0.96_{-0.29}^{+0.45} \pm 0.11$$

$$R_{K^*}^{[15,19]} = 1.18_{-0.32}^{+0.52} \pm 0.10$$

Th: Nuisance parameter required

Example of NP:

LHCb:

 $\mathbf{R}_{\mathbf{K}^*}$: More complex structure, 6-8 Amplitudes and 7 form factors.

Impact of long-distance charm from KMPW on $B \to K^*$ larger than on $B \to K$.

• In presence of NP or for $q^2 < 1 \text{ GeV}^2$ hadronic uncertainties return.

Updated global analysis of $b \to s\ell\ell$

••• hopefully now the race for the right pattern

include additional interesting horses than just the old guys: C₉ and C₉=-C₁₀!

Global analysis of $b \to s\ell\ell$

178 observables from (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

• $B \to K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic obs.

...latest update ${\rm Br}(B \to K^* \mu \mu)$ in small bins.

...LHCb results on R_{K^*}

- $B_s \to \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \ell \ell$ (BR) ($\ell = e, \mu$) (new average $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$)
- $B \to X_s \gamma$, $B \to X_s \mu \mu$, $B_s \to \mu \mu$ (BR).
- Radiative decays: $B^0 \to K^{*0} \gamma$ (A_I and $S_{K^* \gamma}$), $B^+ \to K^{*+} \gamma$, $B_s \to \phi \gamma$
- ▶ Belle measurements for the isospin-averaged but lepton-flavour dependent $(Q_{4,5} = P_{4,5}^{\prime\mu} P_{4,5}^{\prime e})$: [3rd test of LFUV]

$$P_i^{\prime \ell} = \sigma_+ P_i^{\prime \ell}(B^+) + (1 - \sigma_+) P_i^{\prime \ell}(\bar{B}^0)$$
 $\sigma_+ = 0.5 \pm 0.5$

similar treatment of new Belle isospin-averaged result on R_{K^*} (3-bins)

- ▶ ATLAS measurement of whole basis of P_i and CMS measurements of P_1 and P'_5 .
- ▶ ATLAS update of $B_s \to \mu\mu$ (averaged with LHCb & CMS) and latest f_{Bs} lattice update.

Model independent approach to $b \to s\ell\ell$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$\mathcal{O}_{7'} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu},$$

$$\mathcal{O}_{9\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{9\ell'} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

$$\mathcal{O}_{10\ell'} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

At the $\mu_b = 4.8$ GeV scale:

$$\mathcal{C}_7^{\mathrm{SM}} = -0.29, \; \mathcal{C}_9^{\mathrm{SM}} = 4.1, \; \mathcal{C}_{10}^{\mathrm{SM}} = -4.3$$

Interesting Directions:

$$\mathcal{C}_9 = -\mathcal{C}_{10} \quad \Rightarrow \quad L_q \otimes L_\ell$$
 $\mathcal{C}_{9'} = -\mathcal{C}_{10'} \quad \Rightarrow \quad R_q \otimes L_\ell$
 $\mathcal{C}_9 = -\mathcal{C}_{9'} \quad \Rightarrow \quad A_q \otimes V_\ell$

We explore not only directions BUT new BASIS

=>standard muon and electron basis => new LFUV and LFU basis

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

Pull_{SM}: $\chi^2_{SM}(C_i=0)-\chi^2_{min}(C_i^{HIP})$ considering N_{dof}

		=										
	2017	Manufacture and a second secon	CONTRACTOR DESCRIPTION OF THE PERSON OF THE	All	ewited wittening	magailte d'armagail			LFUV	•		
	1D Hyp.	Best fit	1σ	2	σ	Pull _{SM} p	-value Bes	t fit 1σ	2	2σ	Pull_{SM}	p-value
	$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.11 [-1.	28, -0.94]	(-1.45,	-0.75]	5.8	68 -1	.76 $[-2.36, -1.$	23 $[-3.04]$	[-0.76]	3.9	69
\mathcal{C}_{i}	$_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{10\mu}^{\mathrm{NP}}\parallel$	-0.62 [-0.	75, -0.49]	[-0.88,	-0.37]	5.3	58 -0	[-0.84, -0.66]	48] $[-1.04]$	[-0.32]	4.1	78
0	$\mathcal{C}{9\mu}^{ ext{NP}} = -\mathcal{C}_{9\mu}'$	-1.01 [-1.	18, -0.84]	[-1.34,	-0.65]	5.4	61 -1	.64 $[-2.13, -1.$	05] $[-2.52]$	[2, -0.49]	3.2	32
$\mathcal{C}_{ ext{g}}^{ ext{I}}$	$\mathcal{C}_{0\mu}^{\mathrm{NP}} = -3\mathcal{C}_{9e}^{\mathrm{NP}} \ $	-1.07 [-1.	24,-0.90]	[-1.40,	-0.72]	5.8	70 -1	$.35 \mid [-1.82, -0.$	95] [-2.38]	[8, -0.59]	4.0	72
	0010		THE RESERVE OF THE PERSON NAMED AND THE PERSON NAME	Market State of the State of th		Medical						
	2019	- I - I - I - I - I - I - I - I - I - I	N. Carlotte and Carlotte	All		THE PROPERTY OF THE PARTY OF TH	+	$_{ m LFUV}$	7			
	1D Hyp.	Best fit	$1 \sigma/2 \sigma$	σ :	$Pull_{SM}$	p-value	Best fit	$1 \sigma / 2 \sigma$	Pull _{SM}	p-value		
_	$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.02	$\begin{bmatrix} -1.18, -0 \\ [-1.34, -0] \end{bmatrix}$	- 1	5.8	65.1 %	-1.02	$ \begin{bmatrix} -1.38, -0.69 \\ -1.80, -0.40 \end{bmatrix} $	3.5	50.6 %	_	
	$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{10\mu}^{ ext{NP}}$	-0.49	$\begin{bmatrix} -0.59, -0 \\ [-0.69, -0] \end{bmatrix}$	- 1	5.4	55.5 %	-0.44	$ \begin{bmatrix} -0.55, -0.32 \\ -0.68, -0.21 \end{bmatrix} $	4.0	74.0 %		
	$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{9'\mu}$	1.02	$\begin{bmatrix} -1.18, -0 \\ [-1.33, -0 \end{bmatrix}$	- 12	5.7	61.3%	-1.66	$ \begin{bmatrix} -2.15, -1.05 \\ -2.54, -0.47 \end{bmatrix} $	3.1	35.4%		
_	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -3\mathcal{C}_{9e}^{\mathrm{NP}}$	-0.92	[-1.08, -0] [-1.23, -0]		5.7	62.7 %	-0.76	[-1.02, -0.52] $[-1.30, -0.30]$	3.5	50.8 %	_	
			-									

- Hierarchy remains invariant except $C_{9\mu} = -C_{9'\mu}$ scenario $(R_K \approx 1)$
 - Scenario $C_{9\mu}$ preferred in "All" fit Scenario $C_{9\mu}$ = $-C_{10\mu}$ preferred in "LFUV" fit.
- Best fit points for All and LFUV fits in scen. C_{9μ} in nice agreement
- Scenario $C_{10\mu}$ stays at a significance of $\approx 4\sigma$ for All and LFUV fits.

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

Interesting surprises in 2D updates...

2017		All		L	FUV	
2D Hyp.	Best fit	$ Pull_{SM} $	p-value	Best fit	$ Pull_{SM} $	p-value
$\overline{(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})}$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_7')$	(-1.13,0.01)	5.5	69	(-1.85, -0.04)	3.6	66
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9'\mu})$	(-1.15,0.41)	5.6	71	(-1.99, 0.93)	3.7	72
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10'\mu})$	(-1.22, -0.22)	5.7	72	(-2.22, -0.41)	3.9	85
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65
Hyp. 1	(-1.16,0.38)	5.7	73	(-1.68, 0.60)	3.8	78
Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16,0.41)	3.0	37
Hyp. 3	(-0.67, -0.10)	5.0	57	(0.61, 2.48)	3.7	73
Hyp. 4	(-0.70, 0.28)	5.0	57	(-0.74, 0.43)	3.7	72

2019		All		I	$_{ m FUV}$	
2D Hyp.	Best fit	Pull_{SM}	p-value	Best fit	Pull_{SM}	p-value
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-0.95,0.20)	5.7	69.5 %	(-0.30,0.52)	3.6	74.5%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}^{\prime})$	(-1.03, 0.02)	5.6	$\mid 68.2\%\mid$	(-1.03, -0.04)	3.1	53.7%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9'\mu})$	(-1.13, 0.54)	5.9	74.5%	(-1.88,1.14)	3.6	75.7%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10'\mu})$	(-1.17, -0.34)	6.1	78.1 %	(-2.07,-0.63)	4.0	92.8%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.04,-0.11)	5.5	$\mid 65.3\% \mid$	(-0.76.0.25)	3.1	50.8%
Hyp. 1	(-1.09, 0.28)	6.0	75.8%	(-1.69, 0.32)	3.6	77.1%
Hyp. 2	(-1.00,0.09)	5.4	63.9%	(-2.00, 0.26)	3.3	61.2%
Hyp. 3	(-0.50, 0.08)	5.1	55.8%	(-0.43, -0.09)	3.6	74.5%
Hyp. 4	(-0.52, 0.11)	5.2	58.7%	(-0.50, 0.15)	3.7	81.9%
Hyp. 5	(-1.17, 0.24)	6.1	78.2 %	(-2.20, 0.52)	4.1	93.8%

- Increase in significance in scenarios with RHC
- R_K more SM-like better described if $C_{9'\mu}>0$ and $C_{10'\mu}<0$
- A $R_q \otimes L_\ell$ structure for primed operators prefers a V over a L_ℓ structure for leptons.
- Hyp.1 is SM-like for $B_s \rightarrow \mu \mu$ but perfect for $R_K!$

Hyp. 1:
$$(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu}),$$

Hyp. 2: $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = -C_{10'\mu}),$
Hyp. 3: $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = C_{10'\mu}),$
Hyp. 4: $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$
Hyp. 5: $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu}).$

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

2019

-A C_9 ,>0 gets slightly more significant after Moriond.

Implications of the new updates on R_K , R_{K^*} , $Bs \rightarrow \mu\mu$

Let's check how the 6D fit has evolved:

_	2017	$\mathcal{C}_7^{ ext{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	${\cal C}_{10\mu}^{ m NP}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$	
	Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02	4
	1σ	[-0.01, +0.05]	[-1.34, -0.88]	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]	
	$2~\sigma$	[-0.03, +0.07]	[-1.54, -0.63]	[-0.08, +0.84]	[-0.02, +0.08]	[-0.59, +1.58]	[-0.54, +0.68]	

2019	$\mathcal{C}_7^{ ext{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	$\mathcal{C}_{10\mu}^{ ext{NP}}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Best fit	+0.02	-1.13	+0.21	+0.02	+0.39	-0.12
1σ	[-0.01, +0.05]	[-1.28, -0.91]	[+0.04, +0.42]	[+0.00, +0.04]	[-0.09, +0.96]	[-0.40, +0.17]
$2~\sigma$	[-0.03, +0.06]	[-1.48, -0.71]	[-0.12, +0.61]	[-0.02, +0.06]	[-0.56, +1.14]	[-0.57, +0.34]

 $C_{10\mu}$ -C' $_{10\mu}$ stays the same

- Again same picture,
 - -except change in sign of bfp of $C_{10'\mu}$
 - -except significance $5.0\sigma \rightarrow 5.3\sigma$

Implications of the new updates on R_K , R_{K^*} , $Bs \rightarrow \mu\mu$

New Physics in electrons slightly more compatible with zero.

It is then natural to expect some impact in the significance of LFUV+LFU scenarios

Are we overlooking Lepton Flavour Universal NP?

Hypothesis: Lepton Flavour Universality

We traded the usual controversy:

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

Is this New Physics or long-distance charm?

by a more constructive question:

Are we observing two kinds of New Physics?

$$\mathcal{C}^{NP}_{i\ell} = \mathcal{C}^{V}_{i\ell} + \mathcal{C}^{U}_{i}$$
 with $i=9,10$ $\ell=e,\mu$ Lepton Flavour Universal NP Lepton Flavour Universal Violating NP

....extended to primed operators in [Addendum: 1903.09578v3]

Motivation:

• We have LFUV and LFD observables, then it is natural to split:

$$\mathcal{C}^{V}_{i\ell}$$
 $\mathcal{C}^{V}_{i\ell}+\mathcal{C}^{U}_{i}$

New mechanism to fulfill B_s→µµ

Is this the same as adding NP in electrons?

Many previous works already included NP in electrons:

Mahmoudi et al. (large and low recoil data)

London et al. (large and low recoil data)

Ciuchini et al. (only large recoil data)

• • • •

Which is the difference with our proposal?

All previous analyses only explored directions within 2D planes in coordinates $(C_{9\mu}, C_{10\mu})$ and (C_{9e}, C_{10e})

instead the plane in coordinates (C_9^v, C_{10}^v) in presence for instance of C_9^v LFU can translate in a tilted plane in $(C_{9\mu}, C_{10\mu}, C_{9e})$ coordinates

... in summary this is NOT simply a reparametrization

LFU updates

	2017	Best-fit point	1 σ	Pull _{SM}	p-value
	$\mathcal{C}_{9\mu}^{ m V}$	-0.16	[-0.94, +0.46]		
Sc. 5	$\mathcal{C}^{ extsf{V}}_{ extsf{10}\mu}$	+1.00	[+0.18, +1.59]	5.8	78 %
	$\mathcal{C}_9^{ ext{U}} = \mathcal{C}_{10}^{ ext{U}}$	-0.87	[-1.43, -0.14]		
Sc. 6	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V} \ \mathcal{C}_{9}^{ m U} = \mathcal{C}_{10}^{ m U}$	-0.64	[-0.77, -0.51]	6.0	79%
30. 0	$\mathcal{C}_9^{ ext{U}}=\mathcal{C}_{10}^{ ext{U}}$	-0.44	[-0.58, -0.29]	0.0	1370
Sc. 7	$\mathcal{C}_{9\mu}^{ m V}$	-1.57	[-2.14, -1.06]	5.7	72%
	\mathcal{C}_{9}^{\cup}	+0.56	[+0.01, +1.15]	3.7	12 /6
Sc. 8	$\mathcal{C}_{9\mu}^{ m V}=-\mathcal{C}_{10\mu}^{ m V}$	-0.42	[-0.57, -0.27]	5.8	74 %
30. 0	$\mathcal{C}_{ textsf{9}}^{ text{U}}$	-0.67	[-0.90, -0.42]	5.6	14 15

	2019	Best-fit point	1 σ	$Pull_{SM}$	p-value
	$\mathcal{C}_{9\mu}^{ m V}$	-0.34	[-0.93, +0.19]		
Sc. 5	$\mathcal{C}_{10\mu}^{ m V}$	+0.69	[+6.21, +1.12]	5.5	72%
	$\mathcal{C}_{9}^{ ext{U}}=\mathcal{C}_{10}^{ ext{U}}$	-0.50	[-0.92, +0.02]		
Sc. 6	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V} \ \mathcal{C}_{9}^{ m U} = \mathcal{C}_{10}^{ m U}$	-0.52	[-0.64, -0.41]	5.8	71 %
30. 0	$\mathcal{C}_9^{ ext{U}} = \mathcal{C}_{10}^{ ext{U}}$	-0.37	[-0.52, -0.22]	3.0	/ 1 /0
Sc. 7	$egin{array}{c} \mathcal{C}_{9\mu}^{ m V} & oldsymbol{\wedge} \ \mathcal{C}_{9}^{ m U} & oldsymbol{\wedge} \end{array}$	-0.91	[-1.25, -0.58]	5.5	65%
OC. 1		-0.08	[-0.46, +0.31]	5.5	000
Sc. 8	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V}$	-0.33	[-0.45, -0.22]	5.9	74%
	$\mathcal{C}_9^{\mathrm{U}}$	-0.72	[-0.93, -0.47]	0.9	/ 4 /0

Changed

Sc. 7: If only V-NP preference for LFUV-NP

$$C_{9\mu}^V + C_9^U = -0.98$$

Unchanged

Sc. 8: Presence of V-LFU favours slightly $L_q \otimes L_\ell$

• LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

	Scenario	Best-fit point	$\mid 1 \sigma$	Pull _{SM}	p-value
Sc. 9	$\mathcal{C}_{9\mu}^{ m V}=-\mathcal{C}_{10\mu}^{ m V}$	-0.63	[-0.79, -0.47]	5.3	73.4 %
	$\mathcal{C}_{10}^{\scriptscriptstyle ext{O}}$	-0.39	[-0.65, -0.13]	0.0	
Sc. 10	$\mathcal{C}_{9\mu}^{ m V}$	-0.99	[-1.17, -0.80]	5.7	69.7%
50. 10	$\mathcal{C}_{10}^{ ext{U}}$	+0.29	[0.10, 0.48]	0.1	00.170
Sc. 11	$\mathcal{C}_{9\mu}^{ ext{V}}$	-1.07	[-1.25, -0.88]	5.9	73.9 %
50. 11	$\mathcal{C}_{10'}^{ ext{U}}$	-0.31	[-0.48, -0.13]	0.0	10.570
Sc. 12	\mathcal{C}_{α}^{V}	-0.05	[-0.23, 0.14]	1.7	13.1 %
50. 12	\mathcal{C}_{10}°	+0.43	[0.22, 0.65]	1.1	10.1 /0
	$\mathcal{C}^{ ext{V}}_{9\mu}$	-1.12	[-1.29, -0.94]		
Sc. 13	$\mathcal{C}_{9'\mu}^{\mathrm{V}}$	+0.48	[0.19, 0.85]	5.6	78.7 %
DC. 16	$\mathcal{C}_{10}^{\scriptscriptstyle ext{O}}$	+0.26	[0.01, 0.50]	0.0	10.1 /0
	$\mathcal{C}_{10'}^{ ext{U}}$	-0.05	[-0.28, 0.18]		

- Sc. 9 versus Sc.10 preference of C_9^{V} versus C_9^{V} =- C_{10}^{V} in presence of C_{10}^{U} , opposite to the case of C_9^{U} (sc.7-8).
- Sc. 10 versus Sc.11 shows the dominance of C_9^{V} & slight preference of C_{10}^{U} over C_{10}^{U} .
- Sc.12 irrelevance of RHC without C_9^{V} .If $C_{10}^{\text{U}} \rightarrow C_9^{\text{U}}$ then 4σ

Changed

Sc. 7: If only V-NP preference for LFUV-NP

$$C_{9\mu}^V + C_9^U = -0.98$$

Unchanged

Sc. 8: Presence of LFU favours slightly A-NP

New

Sc.9-13: We extend the universal contribution also to **primed universal coefficients** associated to models.

Sc.7-10 show LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

Assuming loop-level scale of NP and no MFV

$$\Lambda_i^L \sim \frac{v}{s_w g} \frac{1}{\sqrt{2|V_{tb}V_{ts}^*|}} \frac{1}{|\mathcal{C}_i^{\text{NP}}|^{1/2}}$$

Mild preference

Scenario 6:
$$C_{9\mu}^{V} = -C_{10\mu}^{V}$$
 $C_{9}^{U} = C_{10}^{U}$

LFUV-NP $\mathsf{L}_q \otimes L_\ell$

 $\Lambda_i^{
m LFUV} \sim 3.9 \ {
m TeV}$

LFU-NP $L_q \otimes R_\ell$

 $\Lambda_i^{
m LFU} \sim 4.6 \; {\sf TeV}$

Scenario 8:
$$C_{9\mu}^{V} = -C_{10\mu}^{V}$$

LFUV-NP $L_q \otimes L_\ell$

 $\Lambda_i^{
m LFUV} \sim 4.6 \; {\sf TeV}$

LFU-NP $\mathsf{L}_q \otimes V_\ell$

 $\Lambda_i^{
m LFU} \sim 3.3~{
m TeV}$

- If we are in presence of two types and scales of NP, their hierarchy depend on the LFU

P'5 under different scenarios

In

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

it was found:

Only in presence of LFU-NP a scenario $C_9^{V}=-C_{10}^{V}$ can work.

for NP points (green, blue, red) only central values are depicted here

Linking charged and neutral anomalies (step 1)

Let's move to SMEFT ($\Lambda_{NP} >> m_{t,W,Z}$)

[Grzadkowski, Iskrzynski, Misiak, Rosiek; Alonso, Grinstein, Camalich]

• **NP** contribution to : $[\bar{\mathbf{c}}\gamma^{\mu}\mathbf{P_L}\mathbf{b}][\bar{\tau}\gamma_{\mu}\mathbf{P_L}\nu_{\tau}]$ \longrightarrow $R_{J/\psi}/R_{J/\psi}^{\mathrm{SM}} = R_D/R_D^{\mathrm{SM}} = R_{D^*}/R_{D^*}^{\mathrm{SM}}$

$$R_{J/\psi}/R_{J/\psi}^{
m SM} = R_D/R_D^{
m SM} = R_{D^*}/R_{D^*}^{
m SM}$$

G_F rescaling

BUT who order that

(at high energy)? Only Two $SU(2)_L$ invariant operators in SMEFT @ 1st order

$$\mathcal{O}^{(1)}_{ijkl} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l],$$

$$\mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \sigma^I Q_j] [\bar{L}_k \gamma^\mu \sigma^I L_l],$$

After EWSB i=2, j=k=l=3

[Capdevila, Crivellin, SDG, Hofer, JM]

Accommodate charged $R_{D(*)}$.

OK constraints:

Bc lifetime, q2 distributions, but also **B**→**K*****v**, direct searches and EWP data.

Contribution to neutral b→s TT with a pattern: $C_{9(10)\tau} \simeq C_{9,10}^{SM} - (+)\Delta$

$$\Delta = 2 \frac{\pi}{\alpha_{em}} \frac{V_{cb}}{V_{tb}V_{ts}^*} \left(\sqrt{\frac{R_X}{R_X^{SM}}} - 1 \right) \simeq \mathcal{O}(100)$$

10% NP w.r.t. tree-level SM \Rightarrow Huge contrib. w.r.t. loopinduced SM.

Linking anomalies with LFU NP (step 2)

Scenario 8 well motivated to link charged/neutral anomalies with LFU

• LFUV: $CV_9 = - CV_{10}$

from **0**2322

• LFU: CU₉ from radiative corrections with insertion of O₂₃₃₃

Assuming a generic flavour structure and NP at the scale Λ :

$$C_9^{
m U} pprox 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};
m SM}}}\right) \left(1 + \frac{\log(\Lambda^2/(1{
m TeV}^2))}{10.5}\right)$$

Agreement region including new $R_{D(*)}$ from Belle, bs \rightarrow ll LFUV and LFU-NP: NP hyp. 7σ

See talk by G. Isidori for explicit UV realisations and A. Crivellin et al. PRL 2019.

Near Future next test: Q₅=P'_{5\(\mu\}-P'_{5\(\ext{e}\)}

What can we learn?

Q5 can disentangle relevant scenarios?

 R_K (if no-RHC are included) cannot distinguish among relevant scenarios.

[Alguerò, Capdevila, SDG, Masjuan, JM: 1902.04900]

The main 1D scenarios with present value of R_K are still too packed within 0.5 σ to disentangle the correct pattern.

Q5 can disentangle relevant scenarios?

Only Belle has been able to measure Q_5 up to now: $Q_{5[1,6]}^{Belle} = 0.656 \pm 0.496$

[S. Wehle et al. PRL118 (2017)]

Table 2: Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

q^2 in GeV^2/c^2	Q_4	Q_5
[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

Q5 can disentangle relevant scenarios?

Instead Q_5 groups relevant scenarios differently. $Q_{5[1,6]}^{Belle} = 0.656 \pm 0.496$

All scenarios with Cv_9 are packed as well as those with Cv_9 = - Cv_{10} BUT in two

different sets. Also: * if $Q_5 \ge 0.3 \text{ CV}_9$ scenarios are preferred.

* if Q_5 <0 then a scenario with only C_{10} >0 can work.

Conclusions

- After the updates of R_K (LHCb), R_{K^*} (Belle) and $B_s \rightarrow \mu\mu$ we find:
 - no dramatic changes in the hierarchy of 1D hypothesis: C_9 and C_9 =- C_9 ' preferred with All fit [178 obs] significance 5.8 (5.7) σ C_9 =- C_{10} preferred with LFUV fit [20 obs] significance 4.0 σ
 - 2D new emerging scenarios including RHC with C_9 '>0 & C_{10} '<0: $(C_{9\mu}, C'_{9\mu} = -C'_{10\mu})$ (6.1 σ)
- LFU-NP structure is **quite dependent** on LFUV-NP structure: A $C_9^{V}=-C_{10}^{V}$ struct. is preferred in All-fit only in presence of C_9^{U}
- We have found a link of charged & neutral anomalies & LFU NP in scn 8.
- While R_K cannot disentangle scenarios, a measurement of Q_5 such that:
 - $Q_5 \ge 0.3$ would **favour** scenarios with $C_{9\mu} < -1$
 - $Q_5 < 0$ would **favour** scenarios with $C_{10\mu} > 0$
 - new data on Q_5 , R_{ϕ} , updated optimized observables is essential. Belle II inputs are also crucial.