Probing the flavor of New Physics with dipoles

Luiz Vale Silva

University of Sussex

17 April, 2019

UNIVERSITY OF SUSSEX

Work in collaboration with **S. Jäger** and **K. Leslie** (U. Sussex) Portorož 2019: Precision era in High Energy Physics

Luiz Vale Silva (University of Sussex)

Outline

- 2 Renormalization of SMEFT
- Oim. 6 corrections to Yukawa couplings

4 Conclusions

三日 のへの

Outline

2 Renormalization of SMEFT

3 Dim. 6 corrections to Yukawa couplings

4 Conclusions

EL OQO

Radiative processes

- \rightarrow Address the structure of flavor, sources of CP violation
 - E.M. form factors: Magnetic Dipole Moment (MDM), Electric Dipole Moment (EDM), etc.

Flavor transitions:
$$\mu \rightarrow e\gamma$$
, $\tau \rightarrow (e, \mu)\gamma$, $\nu' \rightarrow \nu\gamma$,
 $s \rightarrow d\gamma$, $b \rightarrow (s, d)\gamma$, etc.

$$ightarrow$$
 Dipole operators: $\mathcal{L} = \frac{ev_{\rm EW}}{\sqrt{2}} \mathcal{C}^{\beta lpha}_{\psi \gamma} \bar{\psi}_{\beta} \sigma^{\mu
u} \mathcal{P}_{R} \psi_{lpha} \mathcal{F}_{\mu
u} + {
m h.c.}$

\rightarrow Reach to NP scales:

 $\begin{array}{ll} \mathsf{eEDM:} & |\mathrm{Im}[\mathcal{C}_{e\gamma}^{ee}]| \lesssim (8 \times 10^5 \ \mathrm{TeV})^{-2} & \text{[acme]} \\ \mu \to e\gamma: & \sqrt{|\mathcal{C}_{e\gamma}^{e\mu}|^2 + |\mathcal{C}_{e\gamma}^{\mu e}|^2} \lesssim (4 \times 10^4 \ \mathrm{TeV})^{-2} & \text{[meg]} \\ \mathsf{nEDM:} & |\mathrm{Im}[\mathcal{C}_{d\gamma}^{dd}]|, \left|\mathrm{Im}[\mathcal{C}_{u\gamma}^{uu}]\right| \lesssim (2 \times 10^5 \ \mathrm{TeV})^{-2} & \text{[prd92, 092003 (2015)]} \end{array}$

Luiz Vale Silva (University of Sussex)

SMEFT way

 \rightarrow Higher dimensional operators respecting SM local symmetries and containing SM d.o.f. only, suppressed by $\Lambda_{\rm NP} \gg v_{\rm EW}$

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators of dimension six, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B and L

 X^3 , H^6 , H^4D^2 , ψ^2H^3 , X^2H^2 , ψ^2XH , ψ^2H^2D , ψ^4

 $[\psi \text{ fermions}; D \text{ cov. derivative}; X \text{ field strengths}]$

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

 \rightarrow I assume that ops. of dim. > 6 can be neglected ($\sim \Lambda_{\rm NP}^{-4}$, etc.)

Probing non-dipole operators

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \sum_i \mathcal{C}_i Q_i, \qquad \mathcal{C}_i ext{ scales as } \Lambda_{ ext{NP}}^{-2}$$

Mixing with dipole:

$$16\pi^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \sum_i (C_{\psi^2 X H}, C_{\psi^4}, C_{X^3}, C_{X^2 H^2})_i(\mu) \gamma^{(1-\text{loop})}_{i,\psi^2 X H}$$

[Alonso, Jenkins, Manohar, Trott '13]

[Pruna, Signer '14; Davidson '16; Crivellin, Davidson, Pruna, Signer '17]

Ex. of bound: [ACME] $|\frac{m_{t}}{m_{e}} \operatorname{Im} C_{\ell equ}^{(3),eett}| \lesssim 3 \times 10^{-6} \text{ TeV}^{-2}$ [\blacksquare : possible vertices]

1 =

Probing non-dipole operators

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \sum_i \mathcal{C}_i \mathcal{Q}_i, \qquad \mathcal{C}_i ext{ scales as } \Lambda_{ ext{NP}}^{-2}$$

Mixing with dipole:

$$16\pi^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \sum_i (C_{\psi^2 X H}, C_{\psi^4}, C_{X^3}, C_{X^2 H^2})_i(\mu) \gamma^{(1-\text{loop})}_{i,\psi^2 X H}$$

[Alonso, Jenkins, Manohar, Trott '13]

[Pruna, Signer '14; Davidson '16; Crivellin, Davidson, Pruna, Signer '17]

Image: A matrix and a matrix

HERE: Leading Order mixing with the dipole arriving at two-loops

Luiz Vale Silva (University of Sussex)

EL OQO

Outline

Dim. 6 corrections to Yukawa couplings

4 Conclusions

三日 のへの

Renormalization of SM + dim.=6 ops.

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} C_{i} Q_{i}, \qquad C_{i} \text{ scales as } \Lambda_{NP}^{-2}$$

Full set of local operators required in the renormalization program?

-

NP in dipoles

Luiz Vale Silva (University of Sussex)

Full basis of operators

class O: gauge-invariant operators, e.g., Warsaw basis class **A**: BRST-exact operators, i.e., $A = \delta_{BRST}A'$ class **B**: vanish via the equations of motion

$$\begin{pmatrix} [\mathcal{O}]^{\text{ren}} \\ [\mathbf{A}]^{\text{ren}} \\ [\mathbf{B}]^{\text{ren}} \end{pmatrix} = \begin{pmatrix} Z_{\mathcal{O}\mathcal{O}} & Z_{\mathcal{O}A} & Z_{\mathcal{O}B} \\ 0 & Z_{AA} & Z_{AB} \\ 0 & 0 & Z_{BB} \end{pmatrix} \begin{pmatrix} \mathcal{O} \\ \mathbf{A} \\ \mathbf{B} \end{pmatrix} \qquad \begin{array}{l} & \langle 0 | T \{ A\Phi \} | 0 \rangle_{\text{on-shell}} = 0 \\ \langle 0 | T \{ B\Phi \} | 0 \rangle_{\text{on-shell}} = 0 \\ \Phi : \text{ set of local fields} \\ \end{array}$$

[Dixon, Taylor '74; Kluberg-Stern, Zuber '75; Joglekar, Lee '76; Joglekar '77; Collins '84]

[cf. Herrlich, Nierste '96 for double insertions]

 \rightarrow Non-phys. ops. are generated systematically by extending BRST

[Henneaux '93; Barnich, Brandt, Henneaux '00]

 \rightarrow Typically, large set required for renormalizing dim.=6 operators

Renormalization of dipole operators

Consider all operators Q that contribute to $\Sigma_Q Z_{OQ} \mathcal{G}_Q^{\text{tree}}(\Phi) = \mathcal{G}_O(\Phi)$ $\Rightarrow Z_{OQ} = \text{linear combination of } \mathcal{G}_O(\psi^2 A^{\mu} H), \mathcal{G}_O(\psi^2 H), \mathcal{G}_O(\psi^2 A^{\mu}), \mathcal{G}_O(\psi^2)$

 $[\mathcal{G}_{\mathcal{O}}:$ Green's functions of single insertions of (bare) operator $\mathcal{O}]$

[cf., e.g., Grinstein, Springer, Wise '88 on $b \to s \gamma]$

Ex. of structures from non-physical operators: $g_A[(\partial_\nu \bar{\psi}_L)\Gamma^{\mu\nu}t'\xi_R\varphi]A'_\mu, \ \bar{\psi}_L\gamma_\mu(i\not\!\!D\xi_R)(D^\mu\varphi), \ldots$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Outline

4 Conclusions

ELE NOR

Renormalization of $\psi^2 H^3$ operators

 \rightarrow Case we will be focusing upon: $\psi^2 H^3,$ generated in many concrete extensions of the SM

[Davidson '16; Panico, Pomarol, Riembau '18]

 \rightarrow At 1-loop: $\psi^2 H^3$ mix only into $\psi^2 H$; $H^6, \psi^2 H^3$

 \rightarrow Mixing with the dipole: Leading Order at 2-loops

Renormalization of $\psi^2 H^3$ operators

 \rightarrow Case we will be focusing upon: $\psi^2 H^3,$ generated in many concrete extensions of the SM

[Davidson '16; Panico, Pomarol, Riembau '18]

- \rightarrow At 1-loop: $\psi^2 H^3$ mix only into $\psi^2 H$; $H^6, \psi^2 H^3$
- \rightarrow Mixing with the dipole: Leading Order at 2-loops

Ex. of diagrams necessary to determine the mixing with dipoles:

[×: different possibilities for attaching an external gauge boson]

$$Z_{\psi^2 H^3,\psi^2 XH} \stackrel{MS}{=} \operatorname{Coef}_{1/\varepsilon} [\mathcal{G}_{\psi^2 H^3}(\psi^2 AH), \not k \notin (k)], \text{ neglecting Yukawa couplings}$$
[Kinetic basis: $p \cdot \epsilon(k), p' \cdot \epsilon(k), k \cdot \epsilon(k), p \notin (k), p' \notin (k), k \notin (k)]$

Anomalous Dimension Matrix

Dipole:
$$g_X(\bar{\psi}_L \sigma^{\mu\nu} t^I \xi_R \varphi) X^I_{\mu\nu}, (q_L, u_R), (q_L, d_R), (\ell_L, e_R), (\ell_L, \nu_R)$$

 $(16\pi^2)^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = (g_Y^2 \gamma_Y^X + g_L^2 \gamma_L^X + g_C^2 \gamma_c^X) C_{\psi^2 H^3}(\mu)$
 $\frac{X = B}{\frac{\gamma_Y^X}{2}} \frac{3Q_\varphi^Y Q_\varphi^Y (Q_L^Y + Q_R^Y)}{\frac{1}{2} Q_\varphi^Y (Q_L^Y + Q_R^Y)} \frac{1}{2} Q_\varphi^Y (Q_L^Y + Q_R^Y)}{0}$
 $\frac{\gamma_L^X}{\frac{3}{4} Q_\varphi^Y} \frac{3}{8} 0$
 $Q_\varphi^Y = -Q_{\phi}^Y = 1/2; Q_{\ell_L}^Y = -1/2, Q_{e_R}^Y = -1, Q_{\nu_R}^Y = 0; Q_{q_L}^Y = 1/6, Q_{u_R}^Y = +2/3, Q_{d_R}^Y = -1/3$

Cases involving dim.=4 Yukawas not relevant for light fermions

Checks: arbitrary Feynman gauge $\sqrt{}$ independence of specific set of Green's functions $\sqrt{}$

Also, results agree with hep-ph/1810.09413 [Panico, Pomarol, Riembau 18]

Contributions to the dipole Wilson coef.

\rightarrow Solution of the RGE:

$$C_{g_X\psi_X}^{fg}(\mu) = C_{g_X\psi_X}^{fg}(\Lambda_{\rm NP})$$

$$-\ell n \left(\frac{\Lambda_{\rm NP}}{\mu}\right) \times C_{\psi H}^{fg}(\Lambda_{\rm NP}) \times \left(\frac{g_Y^2}{(4\pi)^4}\gamma_Y^X + \frac{g_L^2}{(4\pi)^4}\gamma_L^X\right)$$

$$+ \dots$$

$$\mu_{\rm how}$$

ightarrow At one-loop, $C_{\psi^2 XH}, C_{\psi^4}, C_{X^3}, C_{X^2 H^2}$

ightarrow Consider the pheno. effects of $C^{fg}_{\psi H}(\Lambda_{\rm NP})
eq 0$, $C^{fg}_{g_X\psi X}(\Lambda_{\rm NP}) = 0$

$$\begin{aligned} \mathcal{L} &= \frac{e v_{EW}}{\sqrt{2}} \mathcal{C}_{\psi \gamma}^{\beta \alpha} \bar{\psi}_{\beta} \sigma^{\mu \nu} P_R \psi_{\alpha} F_{\mu \nu} + \text{h.c.} \\ \mathcal{C}_{e \gamma} &= C_{g_Y e B} - C_{g_L e W} , \qquad \mathcal{C}_{d \gamma} = C_{g_Y d B} - C_{g_L d W} \\ \mathcal{C}_{\nu \gamma} &= C_{g_Y \nu B} + C_{g_L \nu W} , \qquad \mathcal{C}_{u \gamma} = C_{g_Y u B} + C_{g_L u W} \end{aligned}$$

[ex. pheno: Crivellin, Najjari, Rosiek '13; Panico, Pomarol, Riembau '18] o o

Tree-level constraints on $\psi^2 H^3$

 $\psi^2 H^3$ changes couplings of the physical Higgs h:

$$\begin{split} \mathcal{L} &= -\bar{u}' M_u u' - h\bar{u}' Y_u u' + \dots \\ [M_{\psi}]_{ij} &\simeq \frac{v_{\rm EW}}{\sqrt{2}} \left([Y_{\psi}^{\rm dim.=4}]_{ij} - \frac{1}{2} v_{\rm EW}^2 [C_{\psi H}^{\dagger}]_{ij} \right) \,, \\ [Y_{\psi}]_{ij} &\simeq \frac{1}{v_{\rm EW}} [M_{\psi}]_{ij} - \frac{v_{\rm EW}^2}{\sqrt{2}} [C_{\psi H}^{\dagger}]_{ij} \,, \quad \psi = u, d, e \end{split}$$

 $\rightarrow M_{\psi}$ combines the Wilson coefficients of $\psi^2 H$ and $\psi^2 H^3$; almost-exact cancellations are not usually expected to happen

 \rightarrow Meson-mixing (K^0 , D^0 , B^0_d , B^0_s oscillations) dominates constraints on flavor-changing currents involving *s*, *c*, *b* or *t*

Finite parts of loop diagrams

 \rightarrow Loop-induced bounds on flavor violating Higgs couplings:

Ex. of Barr-Zee diagram:

Ex. of 1-loop diagram:

[cf. Barr, Zee '90; Harnik, Kopp, Zupan '12; Brod, Haisch, Zupan '13]

 \rightarrow By avoiding a small Yukawa coupling, two-loop diagrams may (over)compensate for the loop-suppression

 \rightarrow Analogously, the two-loop mixing-induced effect will also be enhanced compared to one-loop finite terms

Luiz Vale Silva (University of Sussex)

NP in dipoles

17 April, 2019 16 / 20

Two-loop bounds

 \rightarrow Enhancements in the finite corrections (such as $N_c = 3$) compared to mixing-induced effects (for which $\gamma^{\chi} \sim 1/4$)

 \rightarrow Pheno. results, comparison with Barr-Zee ($\tilde{C}_{\psi H} = V_{\psi}^{\dagger} C_{\psi H}$):

$$\begin{split} \mathsf{eEDM:} \; |\mathrm{Im}[\tilde{C}_{eH}^{ee}(\Lambda_{\mathrm{NP}})]| &\lesssim \mathcal{F} \times 0.004 \times \frac{\sqrt{2}m_e}{v_{\mathrm{EW}}^3} \quad \text{[ACME]} \\ \mu \to e\gamma: \; (|\tilde{C}_{eH}^{e\mu}(\Lambda_{\mathrm{NP}})|^2 + |\tilde{C}_{eH}^{\mu e}(\Lambda_{\mathrm{NP}})|^2)^{1/2} &\lesssim \mathcal{F} \times 0.1 \times \frac{\sqrt{2m_e m_\mu}}{v_{\mathrm{EW}}^3} \quad \text{[MEG]} \\ \mathsf{nEDM:} \; \left|\mathrm{Im}[\tilde{C}_{dH}^{dd}(\Lambda_{\mathrm{NP}})]\right|, \left|\mathrm{Im}[\tilde{C}_{uH}^{uu}(\Lambda_{\mathrm{NP}})]\right| &\lesssim \mathcal{F} \times 10 \times \frac{\sqrt{2}m_d}{v_{\mathrm{EW}}^3} \quad \text{[PRD92, 092003 (2015)]} \end{split}$$

[for nEDM, see, e.g., Pospelov, Ritz '05]

[Values for $\Lambda_{\rm NP} = 1$ TeV, and $\mu = M_H$: further RGE corrections are omitted]

where $\mathcal{F} \sim 0.3$ from Barr-Zee contributions

Luiz Vale Silva (University of Sussex)

Renormalization of four-fermion ops.

 \rightarrow Ongoing analysis of four-fermion operators

 \rightarrow Analogously to Barr-Zee type of contributions: top in loops

 \rightarrow Typically, constraints at the level of $< {\cal O}(0.1)\,{\rm TeV}^{-2}$ w/o considering mixing with dipoles [Falkowski, González-Alonso, Mimouni '17]

17 April, 2019 18 / 20

Outline

2 Renormalization of SMEFT

Dim. 6 corrections to Yukawa couplings

4 Conclusions

ELE SQC

Conclusions

- \rightarrow Radiative processes: sensitive to very high energy scales
- \rightarrow Generic tool for improving our understanding of flavor and CPV
- \rightarrow SMEFT: systematic approach in the absence of new d.o.f. (so far)
- \rightarrow Mainly discussed here: constraints on corrections to Yukawa couplings from mixing with dipole
- \rightarrow Finite contributions dominate bounds on $\psi^2 H^3$ W.C.
- \rightarrow Prospects: constraining four-fermion contact interactions

Conclusions

- \rightarrow Radiative processes: sensitive to very high energy scales
- \rightarrow Generic tool for improving our understanding of flavor and CPV
- \rightarrow SMEFT: systematic approach in the absence of new d.o.f. (so far)
- \rightarrow Mainly discussed here: constraints on corrections to Yukawa couplings from mixing with dipole
- \rightarrow Finite contributions dominate bounds on $\psi^2 H^3$ W.C.
- \rightarrow Prospects: constraining four-fermion contact interactions

Hvala!

Lake Bohinj, Slovenia

Extended BRST-variation

→ Extend BRST-variation to "anti-fields"; $\delta_{BRST} = \delta + \gamma$ increases the mass power counting and the ghost number by one unit → Consider all polynomials of dim. \leq 5, and ghost number -1

$$\begin{split} D_{\mu}C^{I} &= \partial_{\mu}C^{I} + ef_{JK}^{I}A_{\mu}^{J}C^{K}, \ D_{\mu}A_{I}^{\ddagger\mu} = \partial_{\mu}A_{I}^{\ddagger\mu} - ef_{JI}^{K}A_{\mu}^{J}A_{K}^{\ddagger\mu}, \text{ and } L_{I}^{\mu} = \frac{\delta L}{\delta A_{\mu}^{\mu}}, \\ L_{i} &= (-1)^{\epsilon_{i}}\frac{\delta L}{\delta \xi^{i}}, \text{ where } L \text{ is the action.} \\ \text{The field } \xi \text{ designates a fermion or a scalar.} \\ \text{[Batalin-Vilkovisky; Henneaux '93; Collins, Scalise '94; Barnich, Brandt, Henneaux_00]} \end{split}$$

Luiz Vale Silva (University of Sussex)

Some calculation aspects

$\int f[$ internal momenta q, external momenta p, masses M]

Expansion in external momenta for simplifying integrals:

[[]Chetyrkin, Misiak, Münz '97; Gambino, Gorbahn, Haisch '03; Zoller '14]

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

Basic formulas

$$\frac{dC^{T}}{d\ell n(\mu)} = -C^{T} \left(\frac{dZ}{d\ell n(\mu)} Z^{-1} - Z(\epsilon \Delta + \gamma_{M} N) Z^{-1} \right) \equiv C^{T} \gamma$$

for $\psi^{2} H^{3}$: $\Delta = -3, n = 2$;
for ψ^{4} : $\Delta = -2, n = 2$;
for $g \psi^{2} X H$: $\Delta = -1, n = 2$.

$$\mathcal{L}^{(6)}(\beta\alpha) = \sum_{i} M^{-2} \mu^{-\Delta_{i}\epsilon} [C_{i}(\mu)]^{\beta\alpha} [Q_{i}^{bare}]^{\beta\alpha} + \sum_{i,j,f,g} M^{-2} \mu^{-\Delta_{j}\epsilon} [C_{i}(\mu)]^{\beta\alpha} [(Z_{ij}^{X} - \delta_{ij})]^{\beta\alpha fg} [Q_{j}^{bare}]^{fg} + \ldots + \text{h.c.}$$

$$\begin{split} Z_{\psi^{2}H^{3},g\psi^{2}XH}^{X,\ \beta\alpha'g} &= \left[\left(\frac{g_{Y}^{2}}{(4\pi)^{4}} (Z_{Y}^{X})_{1}^{(1)} + \frac{g_{L}^{2}}{(4\pi)^{4}} (Z_{L}^{X})_{1}^{(1)} + \frac{g_{c}^{2}}{(4\pi)^{4}} (Z_{c}^{X})_{1}^{(1)} + \frac{\lambda}{(4\pi)^{4}} (Z_{\lambda}^{X})_{1}^{(1)} + \frac{\Sigma_{k,l}Y_{kl}^{k} \times Y_{lk}}{(4\pi)^{4}} (Z_{det}^{X})_{1}^{(1)} \right) \delta_{f\beta} \delta_{g\alpha} \\ &+ \frac{\Sigma_{l}(Y^{\dagger})_{fl} \times Y_{l\beta}}{(4\pi)^{4}} \delta_{g\alpha} (Z_{Y,Y}^{X})_{1}^{(1)} + \frac{(Y^{\dagger})_{g\beta} \times (Y^{\dagger})_{\alpha f}}{(4\pi)^{4}} (Z_{Y,Y}^{X})_{1}^{(1)} + \frac{\Sigma_{k}Y_{\alpha k} \times (Y^{\dagger})_{kg}}{(4\pi)^{4}} \delta_{f\beta} (Z_{Y,Y}^{X})_{1}^{(1)} \right] \frac{1}{e} + \dots \end{split}$$

Luiz Vale Silva (University of Sussex)

Appendix

Dipole: $g_X(\bar{\psi}_L \sigma^{\mu\nu} t^I \xi_R \varphi) X^I_{\mu\nu}$, (q_L, u_R) , (q_L, d_R) , (ℓ_L, e_R) , (ℓ_L, ν_R)

	X = B	X = W	X = G
$(Z_Y^X)_1^{(1)}$	$rac{3}{4}Q_arphi^YQ_arphi^Y(Q_L^Y+Q_R^Y)$	$rac{1}{8}Q_arphi^Y(Q_L^Y+Q_R^Y)$	0
$(Z_L^X)_1^{(1)}$	$rac{3}{16}Q_arphi^{m{Y}}$	$\frac{3}{32}$	0
$(Z_c^X)_1^{(1)}$	0	0	0
$(Z^X_\lambda)^{(1)}_1$	0	0	0
$(Z_{y,y}^{\chi})_{1}^{(1)}$	$rac{1}{16}(5Q_{L}^{Y}+Q_{R}^{Y})$	$\frac{1}{32}$	<u>3</u> 8
$(Z_{Y,y}^X)_1^{(1)}$	0	0	0
$(Z_{Y,Y}^X)_1^{(1)}$	$\frac{1}{16}(Q_L^Y + 5 Q_R^Y)$	$\frac{1}{96}$	$\frac{3}{8}$
$(Z_{\det^2}^X)_1^{(1)}$	0	0	0

 $Q_{\phi}^{Y}=-Q_{\tilde{\phi}}^{Y}=1/2;\;Q_{\ell_{L}}^{Y}=-1/2,\;Q_{e_{R}}^{Y}=-1,\;Q_{\nu_{R}}^{Y}=0;\;Q_{q_{L}}^{Y}=1/6,\;Q_{u_{R}}^{Y}=+2/3,\;Q_{d_{R}}^{Y}=-1/3$

Luiz Vale Silva (University of Sussex)

Appendix

Channel	Coupling	Bound
$\mu \to e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$<$ 0.63 $\times 10^{-6}$
$\mu \to 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$\lesssim 3.1\times 10^{-5}$
electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	-0.00220.0009
electron EDM	$ \text{Im}(Y_{e\mu}Y_{\mu e}) $	$<$ 0.10 \times 10 ⁻⁸
$\mu \to e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$< 1.2 \times 10^{-5}$
$M\text{-}\bar{M}$ oscillations	$ Y_{\mu e} + Y_{e\mu}^* $	< 0.079
$\tau \to e \gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
$\tau \to 3 e$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	$\lesssim 0.12$
electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-0.24 \dots -0.10] \times 10^{-3}$
electron EDM	$ \mathrm{Im}(Y_{e\tau}Y_{\tau e}) $	$<$ 0.01 \times 10 ⁻⁸
$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2+ Y_{\mu\tau} ^2}$	0.016
$\tau \to 3 \mu$	$\sqrt{ Y_{\tau\mu}^2 + Y_{\mu\tau} ^2}$	$\lesssim 0.25$
muon $g-2$	$\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$	$(2.5 \pm 0.71) \times 10^{-3}$
muon EDM	$\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$	-0.81.0
$\mu \rightarrow e\gamma$ ()	$(\tau_{\tau\mu}Y_{e\tau} ^2 + Y_{\mu\tau}Y_{\tau e} ^2)^{1/4}$	$< 0.60 \times 10^{-4}$
		10-7
neutron EDM [37, 52]	$ \mathrm{Im}(Y_{ut}Y_{tu}) $	$< 4.4 \times 10^{-7}$
	IT (TC TC)	10=4

[Table adapted from Harnik, Kopp, Zupan '12]

$$\begin{split} \mathcal{B}(h \to \ell \ell') & @ 95\% \text{ CL:} \\ \sqrt{|\tilde{\mathcal{C}}_{eH}^{e\mu}|^2 + |\tilde{\mathcal{C}}_{eH}^{\mu e}|^2} < 1.3 \times 10^{-2} \text{ TeV}^{-2} \\ \sqrt{|\tilde{\mathcal{C}}_{eH}^{e\tau}|^2 + |\tilde{\mathcal{C}}_{eH}^{\tau e}|^2} < 5.6 \times 10^{-2} \text{ TeV}^{-2} \\ \sqrt{|\tilde{\mathcal{C}}_{eH}^{\mu\tau}|^2 + |\tilde{\mathcal{C}}_{eH}^{\tau\mu}|^2} < 8.1 \times 10^{-2} \text{ TeV}^{-2} \\ Y_{ij}^{HKZ} \to -\frac{v_{\rm EW}^2}{\sqrt{2}} [\tilde{\mathcal{C}}^{\dagger}]_{ij} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Appendix

$$\begin{split} \mathcal{B}(h \to e\mu) &< 3.5 \times 10^{-4} \; (95\% \; \text{CL}) \quad \text{[Khachatryan:2016rke]} \\ \mathcal{B}(h \to e\tau) &< 6.9 \times 10^{-3} \; (95\% \; \text{CL}) \quad \text{[Khachatryan:2016rke]} \\ \mathcal{B}(h \to \mu\tau) &< 1.43\% \; (95\% \; \text{CL}) \quad \text{[Aad:2016blu]} \\ \\ \mathcal{B}(\mu \to e\gamma) &< 4.2 \times 10^{-13} \; (90\% \; \text{CL}) \quad \text{[TheMEG:2016wtm]} \\ \mathcal{B}(\tau \to e\gamma) &< 3.3 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \mathcal{B}(\tau \to \mu\gamma) &< 4.4 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \\ \Delta a_e &= a_e^{\exp} - a_e^{\text{SM}} = -0.88(0.36) \times 10^{-12} \; @ \; 1\sigma \quad \text{[Parker:2018]} \\ \Delta a_\mu &= a_\mu^{\exp} - a_\mu^{\text{SM}} = 268(63)(43) \times 10^{-11} \; @ \; 1\sigma \quad \text{[Tanabashi:2018oca]} \\ &\quad |d_e|/e < 1.1 \times 10^{-29} \; \text{cm} \; (90\% \; \text{CL}) \quad \text{[Andreev:2018ayy]} \\ &\quad |d_\mu|/e < 1.9 \times 10^{-19} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Bennett:2008dy]} \\ &\quad d_\tau/e \in [-2.2, 4.5] \times 10^{-17} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Inami:2002ah]} \\ &\quad |d_N|/e < 3.0 \times 10^{-26} \; \text{cm} \; (90\% \; \text{CL}) \quad \text{[Afach:2015cja]} \\ \end{split}$$