Implications of new physics in \(b \to c \tau \nu \) for polarisation observables and \(\Lambda_b \to \Lambda_c \tau \nu \)

Ulrich Nierste
Karlsruhe Institute of Technology
Institute for Theoretical Particle Physics

Precision era in high-energy physics
Portorož, 17 Apr 2019
I’ll present an update of

Impact of polarisation observables and $B_c \to \tau \nu$ on new physics explanations of the $b \to c \tau \nu$ anomaly

1. $b \to c \tau \nu$ and new physics
2. Polarisation observables
3. Magic relation for $\mathcal{R}(\Lambda_c)$
4. Summary
$b \rightarrow c\tau\nu$

$$\mathcal{R}(D^{(*)}) \equiv \frac{\text{BR}(B \rightarrow D^{(*)}\tau\nu)}{\text{BR}(B \rightarrow D^{(*)}\ell\nu)}$$

measured above SM expectation by 3.1σ
New BELLE measurements:

\[
\mathcal{R}(D)_{\text{Belle}} = 0.307 \pm 0.037_{\text{stat}} \pm 0.016_{\text{syst}}
\]

\[
\mathcal{R}(D^*)_{\text{Belle}} = 0.283 \pm 0.018_{\text{stat}} \pm 0.014_{\text{syst}}
\]

New world average:

\[
\mathcal{R}(D) = 0.334 \pm 0.031
\]

\[
\mathcal{R}(D^*) = 0.297 \pm 0.015
\]

deviates from SM by 3.1\sigma:

\[
\mathcal{R}_{\text{SM}}(D) = 0.299 \pm 0.003
\]

\[
\mathcal{R}_{\text{SM}}(D^*) = 0.258 \pm 0.005
\]
\[\frac{\mathcal{R}(D)}{\mathcal{R}(D)_{SM}} = 1.12 \pm 0.10_{\text{stat}} \pm 0.08_{\text{syst}}, \quad 1.1\sigma \]

\[\frac{\mathcal{R}(D^*)}{\mathcal{R}(D^*)_{SM}} = 1.15 \pm 0.06_{\text{stat}} \pm 0.027_{\text{syst}}, \quad 2.6\sigma \]

Which new physics could compete with a SM tree–level decay?
Two-Higgs-doublet models (2HDM) predict a charged Higgs boson:

Two independent H^+ couplings to quarks: $b_L - c_R$ and $b_R - c_L$

This is not the type-I or type-II 2HDM.
The charged-Higgs explanation is under pressure from $B_c \to \tau \bar{\nu}$: From the measured lifetime we know the total decay width $\Gamma_{\text{tot}}(B_c)$. Since

$$\text{BR}(B_c \to \tau \bar{\nu}) \equiv \frac{\Gamma(B_c \to \tau \bar{\nu})}{\Gamma_{\text{tot}}(B_c)},$$

we have

$$\Gamma(B_c \to \tau \bar{\nu}) = \Gamma_{\text{tot}}(B_c) \text{BR}(B_c \to \tau \bar{\nu}).$$

Now $\Gamma(B_c \to \tau \bar{\nu})$ involves the same combination of charged-Higgs couplings as $\Gamma(B \to D^* \tau \nu)$, and the $\mathcal{R}(D^*)$ data are compatible only with an excessive enhancement of $\text{BR}(B_c \to \tau \bar{\nu})$ over $\text{BR}(B_c \to \tau \bar{\nu})_{\text{SM}} = 0.02$. Alonso, Grinstein, Martin Camalich 2015

\rightarrow more on this later
Leptoquarks

Theorists’ current darlings: **leptoquarks**

Leptoquarks . . .

- . . . are bosons with **spin 0** or **spin 1**,
- . . . couple quark to lepton,
- . . . must be **colour (anti-)triplets** (like the (anti-)quarks),
- . . . must carry **weak hypercharge** and **electric charge** \(Q \),
- . . . are either **singlets, doublets** or **triplets** of **weak-isospin SU(2)**.

Examples:

- **spin 0 SU(2) singlet**
 \[Q = \frac{1}{3} \]

- **spin 1 SU(2) singlet**
 \[Q = \frac{2}{3} \]
Whatever it is (charged Higgs or leptoquark of any kind), it must be charged and therefore very heavy.
Whatever it is (charged Higgs or leptoquark of any kind), it must be charged and therefore very heavy.

One can describe all possible new physics effects by effective four-fermion interactions.

Need these four-fermion operators:

\[
O^L_V = \bar{c}_L \gamma^\mu b_L \bar{\tau}_L \gamma_\mu \nu_{\tau L},
\]

\[
O^R_S = \bar{c}_L b_R \bar{\tau}_R \nu_{\tau L},
\]

\[
O^L_S = \bar{c}_R b_L \bar{\tau}_R \nu_{\tau L},
\]

\[
O_T = \bar{c}_R \sigma^{\mu \nu} b_L \bar{\tau}_R \sigma_{\mu \nu} \nu_{\tau L}.
\]

The corresponding coefficients \(C^L_V, C^R_S, C_T \) can be fitted to data.
The coefficients are suppressed by $\frac{M_{W}^{2}}{M_{\text{new}}^{2}}$, where M_{new} is the mass of the charged Higgs boson or leptoquark. The SM suppression factor $|V_{cb}| \approx 0.04$ is absent, so $M_{\text{new}} \sim 1.5 \text{ TeV}$ could explain $\mathcal{R}(D^{(*)})$.

Note:
The operator $\bar{c}_{R}\gamma^{\mu}b_{R} \bar{\tau}_{L}\gamma_{\mu}\nu_{\tau L}$ has the same coefficient as $\bar{c}_{R}\gamma^{\mu}b_{R} \bar{\ell}_{L}\gamma_{\mu}\nu_{\ell L}$, $\ell = e, \mu$ at order $\frac{M_{W}^{2}}{M_{\text{new}}^{2}}$. Lepton flavour universality violation is only possible at order $\frac{M_{W}^{4}}{M_{\text{new}}^{4}}$.

Ulrich Nierste (KIT)
Two-dimensional scenarios

coefficients

real C_V^L, $C_S^L = -4C_T$

real C_S^R, C_S^L

real C_V^L, C_S^R

Re[$C_S^L = 4C_T$], Im[$C_S^L = 4C_T$]
Apart from $\mathcal{R}(D(\ast))$ we use the τ polarisation asymmetry in $B \to D^*\tau \nu$:

$$P_\tau(D^*) = \frac{\Gamma(B \to D^*\tau^{\lambda=+1/2} \nu) - \Gamma(B \to D^*\tau^{\lambda=-1/2} \nu)}{\Gamma(B \to D^*\tau \nu)},$$

where λ denotes the τ helicity.

$$P_\tau(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16} \quad \text{Belle 2016}$$

At present $P_\tau(D^*)$ is not constraining new-physics scenarios.
New: longitudinal D^* polarisation fraction in $B \rightarrow D^*\tau\nu$

$$F_L(D^*) \equiv \frac{\Gamma(B \rightarrow D^*_L\tau\nu)}{\Gamma(B \rightarrow D^*\tau\nu)}$$

$$F_L(D^*) = 0.60 \pm 0.08 \pm 0.035 \quad \text{Belle 2018}$$

While consistent with

$$F_{L,SM}(D^*) = 0.46 \pm 0.04$$

at 1.5σ, the measurement of $F_L(D^*)$ already helps to favour some new-physics scenarios over others.
New: longitudinal D^* polarisation fraction in $B \to D^{*\tau\nu}$

$$F_L(D^*) \equiv \frac{\Gamma(B \to D^{*\tau\nu})}{\Gamma(B \to D^{*\tau\nu})}$$

$$F_L(D^*) = 0.60 \pm 0.08 \pm 0.035 \quad \text{Belle 2018}$$

While consistent with

$$F_{L,SM}(D^*) = 0.46 \pm 0.04$$

at 1.5σ, the measurement of $F_L(D^*)$ already helps to favour some new-physics scenarios over others.

From our fit results we predict $F_L(D^*), P_{\tau}(D^*), P_{\tau}(D)$ and

$$R(\Lambda_c) \equiv \frac{BR(\Lambda_b \to \Lambda_c\tau\nu_\tau)}{BR(\Lambda_b \to \Lambda_c\ell\nu_\ell)}.$$
$B_c \rightarrow \tau \nu$

$\text{BR}(B_c \rightarrow \tau \nu)$ severely affects the charged Higgs scenario. From the non-observation of $Z \rightarrow b\bar{b}[\rightarrow B_c \rightarrow \tau \nu]$ at LEP 1 an upper bound $\text{BR}(B_c \rightarrow \tau \nu) < 10\%$ has been inferred. Akeroyd, Chen 2017
$B_c \rightarrow \tau\nu$

$\text{BR}(B_c \rightarrow \tau\nu)$ severely affects the charged Higgs scenario. From the non-observation of $Z \rightarrow b\bar{b}[\rightarrow B_c \rightarrow \tau\nu]$ at LEP 1 an upper bound $\text{BR}(B_c \rightarrow \tau\nu) < 10\%$ has been inferred. Akeroyd, Chen 2017

This bound estimates the ratio f_c/f_u of the $b \rightarrow B_c$ and $b \rightarrow B_u$ fragmentation probability from pp and $p\bar{p}$ data, especially from

$$R \equiv \frac{f_c}{f_u} \frac{\text{BR}(B_c^- \rightarrow J/\psi\pi^-)}{\text{BR}(B^- \rightarrow J/\psi K^-)}.$$

$$R = (4.8 \pm 0.5 \pm 0.6) \cdot 10^{-3} \quad \text{with } p_T > 15 \text{ GeV, CMS 2014}$$

$$R = (6.83 \pm 0.18 \pm 0.09) \cdot 10^{-3} \quad \text{with } 0 < p_T < 20 \text{ GeV, LHCb 2014}$$

p_T dependence indicates process-dependent effects:

B_c production is not the same as $b \rightarrow B_c$ fragmentation.
\(B_c \rightarrow \tau \nu \)

\(\text{BR}(B_c \rightarrow \tau \nu) \) severely affects the charged Higgs scenario. From the non-observation of \(Z \rightarrow b \bar{b} [\rightarrow B_c \rightarrow \tau \nu] \) at LEP 1 an upper bound \(\text{BR}(B_c \rightarrow \tau \nu) < 10\% \) has been inferred. Akeroyd, Chen 2017

This bound estimates the ratio \(f_c / f_u \) of the \(b \rightarrow B_c \) and \(b \rightarrow B_u \) fragmentation probability from \(pp \) and \(p\bar{p} \) data, especially from

\[
R \equiv \frac{f_c}{f_u} \frac{\text{BR}(B_c^- \rightarrow J/\psi\pi^-)}{\text{BR}(B^- \rightarrow J/\psi K^-)}.
\]

\[
R = (4.8 \pm 0.5 \pm 0.6) \cdot 10^{-3} \quad \text{with } p_T > 15 \text{ GeV, CMS 2014}
\]

\[
R = (6.83 \pm 0.18 \pm 0.09) \cdot 10^{-3} \quad \text{with } 0 < p_T < 20 \text{ GeV, LHCb 2014}
\]

\(p_T \) dependence indicates process-dependent effects:

\(B_c \) production is not the same as \(b \rightarrow B_c \) fragmentation.

We perform our analyses for three cases, assuming \(\text{BR}(B_c \rightarrow \tau \nu) < 10\% \), \(\text{BR}(B_c \rightarrow \tau \nu) < 30\% \), or \(\text{BR}(B_c \rightarrow \tau \nu) < 60\% \).
Compare leptoquark S_1 scenario (feeding $C^L_V, C_S = -4C_T$) and charged-Higgs scenario (feeding $C^{L,R}_S$) with $\text{BR}(B_c \rightarrow \tau\nu) < 10\%$, $\text{BR}(B_c \rightarrow \tau\nu) < 30\%$, or $\text{BR}(B_c \rightarrow \tau\nu) < 60\%$:

<table>
<thead>
<tr>
<th>2D hyp.</th>
<th>best-fit</th>
<th>p-value (%)</th>
<th>pull_{SM}</th>
<th>$\mathcal{R}(D)$</th>
<th>$\mathcal{R}(D^*)$</th>
<th>$F_L(D^*)$</th>
<th>$P_\tau(D^*)$</th>
<th>$P_\tau(D)$</th>
<th>$\mathcal{R}(\Lambda_c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(C^L_V, C^L_S = -4C_T)$</td>
<td>(0.11, -0.05)</td>
<td>31.5</td>
<td>3.3</td>
<td>0.327</td>
<td>-0.2 σ</td>
<td>0.300</td>
<td>-0.2 σ</td>
<td>0.47</td>
<td>-1.5 σ</td>
</tr>
<tr>
<td>$(C^R_S, C^L_S)_{60%}$</td>
<td>(0.30, -0.26)</td>
<td>77.4</td>
<td>3.5</td>
<td>0.333</td>
<td>0.0 σ</td>
<td>0.299</td>
<td>0.0 σ</td>
<td>0.54</td>
<td>-0.7 σ</td>
</tr>
<tr>
<td>$(C^R_S, C^L_S)_{30%}$</td>
<td>(0.20, -0.15)</td>
<td>29.9</td>
<td>3.3</td>
<td>0.348</td>
<td>+0.4 σ</td>
<td>0.280</td>
<td>-1.2 σ</td>
<td>0.51</td>
<td>-1.0 σ</td>
</tr>
<tr>
<td>$(C^R_S, C^L_S)_{10%}$</td>
<td>(0.11, -0.04)</td>
<td>3.2</td>
<td>2.6</td>
<td>0.360</td>
<td>+0.8 σ</td>
<td>0.263</td>
<td>-2.2 σ</td>
<td>0.48</td>
<td>-1.4 σ</td>
</tr>
</tbody>
</table>

- S_2 scenario in good shape, with SM-like $F_L(D^*)$.
- Charged-Higgs scenario still alive.
- $F_L(D^*) > F_{L_{\text{SM}}}(D^*)$ favours charged-Higgs over other scenarios.

If a charged Higgs is behind $\mathcal{R}(D^{(*)})$, then either $\text{BR}(B_c \rightarrow \tau\nu) \gtrsim 30\%$ or $\mathcal{R}(D^*)$ will come down in future measurements.
Compare scenarios with leptoquarks U_1 (feeding C^L_V, C^R_S) and S_2 (feeding $C^L_S = 4C_T$):

<table>
<thead>
<tr>
<th>2D hyp.</th>
<th>best-fit</th>
<th>p-value (%)</th>
<th>pullSM</th>
<th>$\mathcal{R}(D)$</th>
<th>$\mathcal{R}(D^*)$</th>
<th>$F_L(D^*)$</th>
<th>$P_\tau(D^*)$</th>
<th>$P_\tau(D)$</th>
<th>$\mathcal{R}(\Lambda_c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C^L_V, C^R_S)</td>
<td>$(0.08, -0.02)$</td>
<td>25.9</td>
<td>3.2</td>
<td>0.337 $\pm 0.1 \sigma$</td>
<td>0.296 -0.1σ</td>
<td>0.46 -1.6σ</td>
<td>-0.50</td>
<td>-0.2σ</td>
<td>0.29</td>
</tr>
<tr>
<td>$(\text{Re}[C^L_S = 4C_T], \text{Im}[C^L_S = 4C_T])</td>
<td>_{60,30%}$</td>
<td>$(-0.07, \pm 0.30)$</td>
<td>25.0</td>
<td>3.2</td>
<td>0.333</td>
<td>0.297</td>
<td>0.45 -1.7σ</td>
<td>-0.41</td>
<td>-0.1σ</td>
</tr>
<tr>
<td>$(\text{Re}[C^L_S = 4C_T], \text{Im}[C^L_S = 4C_T])</td>
<td>_{10%}$</td>
<td>$(-0.03, \pm 0.23)$</td>
<td>7.1</td>
<td>2.9</td>
<td>0.326 -0.2σ</td>
<td>0.276 -1.4σ</td>
<td>0.46 -1.6σ</td>
<td>-0.44</td>
<td>-0.1σ</td>
</tr>
</tbody>
</table>

- $F_L(D^*)$ SM-like in both scenarios.
- U_1 scenario in good shape, can also explain the $b \to \mu^+\mu^-$ anomalies $R_K^{(*)}, P_5^\prime$
 - Buttazzo, Greljo, Isidori, Marzocca 2017
 - Calibbi, Crivellin, Li 2017
- For the S_2 scenario it is essential to permit complex coefficients to get a good fit.

- The S_2 scenario will also be under pressure, if future bounds on $\text{BR}(B_c \to \tau\nu)$ approach 10% while $\mathcal{R}(D^{(*)})$ stays high.
- The S_2 scenario is further already meaningfully probed by high-p_T data from ATLAS and CMS.
 - Greljo, Martin Camalich, Ruiz-Álvarez, 2018
Polarisation observables

Future more precise measurements can distinguish the scenarios:

The plotted regions correspond to the 1σ ranges of the coefficients.

Red: leptoquark S_1
Blue: charged Higgs
Violet: leptoquark U_1
Orange: leptoquark S_2
A simultaneous explanation of $b \to s\mu^+\mu^-$ and $b \to c\tau\nu$ data with scalar leptoquarks needs two leptoquarks to suppress excessive contributions to $b \to s\bar{\nu}\nu$.

Here $\Phi_1 = S_1$ and Φ_3 is an SU(2) triplet.
What about

$$R(\Lambda_c) \equiv \frac{\text{BR}(\Lambda_b \rightarrow \Lambda_c \tau \nu_\tau)}{\text{BR}(\Lambda_b \rightarrow \Lambda_c \ell \nu_\ell)}$$

In all scenarios with good p-values we essentially predict the same value for $R(\Lambda_c)$.
Inspecting the analytic expressions we find a sum rule:

\[
\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{SM}(\Lambda_c)} = 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{SM}(D^*)} + x.
\]

The remainder \(x \) is a function of the new-physics coefficients \(C_V^L, C_S^L, C_T \) and stays small, \(|x| \leq 0.05\), when \(C_V^L, C_S^L, C_T \) are varied within the ranges allowed by the measured values of \(\mathcal{R}(D^{(*)}) \).
Magic relation

Inspecting the analytic expressions we find a sum rule:

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{SM}(\Lambda_c)} = 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{SM}(D^*)} + x.$$

The remainder x is a function of the new-physics coefficients $C_V^L, C_S^{L,R}, C_T$ and stays small, $|x| \leq 0.05$, when $C_V^L, C_S^{L,R}, C_T$ are varied within the ranges allowed by the measured values of $\mathcal{R}(D^*)$.

Thus current data entail

$$\mathcal{R}(\Lambda_c) = \mathcal{R}_{SM}(\Lambda_c) (1.14 \pm 0.06) = 0.38 \pm 0.02_{\text{exp}} \pm 0.02_{\text{th}}$$

in any model of new physics!
Suppose you will measure $R(\Lambda_c)$ by 3σ below the SM value of $R_{SM}(\Lambda_c) = 0.33 \pm 0.01$.
This will actually weaken the case of new physics and point to inconsistent measurements!

If you instead find $R(\Lambda_c)$ complying with our prediction of $R(\Lambda_c) = 0.38 \pm 0.02 \pm 0.02$ you give support to the new-physics interpretation of $R(D^*)$.

All possible new-physics (without light right-handed neutrinos) in all possible observables of $b \rightarrow c\tau\nu$ decays can be parametrised in terms of the four complex coefficients C_L^V, C_L^S, C_R^S, C_T.

The charged-Higgs scenario (with non-zero C_L^S) is not ruled out yet. (But collider data put this scenario under pressure.)

Scalar leptoquark S_1 and vector leptoquark U_1 exchange give good fits as well.

The leptoquark S_2 scenario works with complex coefficient only and is cornered by high-p_T searches.

Polarisation measurements can discriminate between different scenarios.

$\mathcal{R}(\Lambda_c)$ is an important redundant measurement to validate the $\mathcal{R}(D^{(*)})$ anomaly. In any model of new physics one has $\mathcal{R}(\Lambda_c) = 0.38 \pm 0.02 \pm 0.02$.