The Scalar Era

Listening for New Scalar Fields with Gravitational Waves.

Kai Schmitz

Postdoc at the *Dipartimento di Fisica e Astronomia "Galileo Galilei"* at the *Università degli Studi di Padova*, Padua, Italy

Based on ARXIV:1904.07870 [HEP-PH]. In collaboration with **Francesco d'Eramo (Padua)**.

Portorož Workshop 2019: Precision Era in High Energy Physics *Astroparticle and Cosmology 2* Session | Portorož, Slovenia | 18/04/2019

Gravitational waves

[LIGO/Virgo | Gravitational-Wave Transient Catalog (GWTC) 1 | 1811.12907]

Era of gravitational-wave astronomy

Ground

Space

Sky

Cosmological gravitational-wave signals

Topological defects

[Cathal O'Connell | COSMOS Magazine 04/2018]

First-order phase transitions

[David Weir | 1705.01783]

 \rightarrow See talks by Vedran Brdar and Stephan Huber

Inflation

[NASA / WMAP Science Team]

 \rightarrow This talk: Use the stochastic background of inflationary GWs to probe new particle physics

Primordial gravitational waves from inflation

Tensor perturbations of the metric

$$ds^{2} = -dt^{2} + \frac{a^{2}}{a}(\delta_{ij} + h_{ij}) dx^{i} dx^{j}$$

- Stretched to super-horizon size during inflation, frozen till re-entry
- **EOM** for Fourier modes $(u = k\tau)$

$$\left[\left(\frac{d^2}{du^2} + \frac{2}{a} \frac{da}{du} \frac{d}{du} + 1 \right) h_k^{+,\times} = 0 \right]$$

Sub-horizon modes are redshifted according to $a(u) \rightarrow \text{Logbook}$ of the expansion history!

- Measure reheating temperature after inflation. [0802.2452, 0804.1827, 1110.4169, 1305.3392, ...]
- ▶ Determine equation of state during the QCD phase transition. [1010.4857, 1904.01046]
- Our work: Probe the presence of new scalar fields in the early Universe.

Scalar fields in the early Universe

Toy model of a scalar field ϕ with mass m_{ϕ} , decay rate Γ_{ϕ} , and initial field value $\phi_{\rm ini}$

Modulus field in string theory

Saxion in SUSY axion model Flavon field in a flavor model

Modified expansion history:

- Scalar field fixed at $\phi_{\rm ini}$ until $H \sim m_\phi \ \to \ {
 m Radiation}$ domination after inflation
- Oscillations around potential minimum

 Scalar-field domination / The Scalar Era
- Scalar field decays at $t \sim 1/\Gamma_{\phi}$ into radiation \rightarrow Standard radiation domination

The scalar era

Klein-Gordan equation

$$\left[\frac{d^2}{dt^2} + \left(3H + \Gamma_{\phi}\right)\frac{d}{dt} + m_{\phi}^2\right]\phi = 0$$

Covariant energy conservation

$$\left[\frac{d}{dt} + 4\frac{g_{*,s}(\rho_R)}{g_{*,\rho}(\rho_R)}H\right]\rho_R = \Gamma_{\phi}\dot{\phi}^2$$

Friedmann equation for $H = \dot{a}/a$

$$H^{2} = \frac{1}{3 M_{\rm Pl}^{2}} \left(\frac{1}{2} \dot{\phi}^{2} + \frac{1}{2} m_{\phi}^{2} \phi^{2} + \rho_{R} \right)$$

Pseudo EOS parameter ω , such that $a \propto t^{2/3/(1+\omega)}$

- Solve coupled system of equations in order to determine modified expansion history.
- \triangleright Transfer function χ_k for the stochastic background of primordial GWs from inflation:

$$\Omega_{\text{GW}}^{0}(f) \simeq \frac{1}{12} \frac{k^2}{a_0^2 H_0^2} \left| \frac{\chi_k}{\chi_k} \right|^2 \mathcal{P}_{\text{tensor}}^{\text{inflation}}(k) , \quad f = \frac{k}{2\pi a_0}$$

Final gravitational-wave spectrum

$$\mathcal{P}_{\text{tensor}}^{\text{inflation}} = r \, A_{\text{scalar}}^{\text{COBE}} \left(\frac{k}{k_{\text{CMB}}} \right)^{n_l}$$

Optimistic ansatz, explore *maximal* reach of future GW experiments

- Maximal amplitude → tensor/scalar ratio r = 0.07
- ► Blue spectrum \rightarrow tensor index $n_t = 0.4$
- See, e.g., natural inflation coupled to gauge fields.

[1109.0022, 1110.3327, 1203.5849, 1603.01287, 1707.07943, 1904.01488, ...]

The scalar era imprints a characteristic step-like feature on the primordial GW background.

Experimental prospects

Signal-to-noise ratios (SNRs)

- 1 Total SNR based on full spectrum → Will an experiment be able to see at least some signal?
- 2 Reduced SNR after subtracting a power-law fit of the spectrum → Will an experiment be able to see a feature in the spectrum?

Each parameter points translates into an experimental fingerprint. Point ②:

- LISA, DECIGO, BBO will observe a departure from a power law.
- CE, IPTA, and SKA will detect a stochastic GW background.
- ET and HLVK will not observe any primordial GW signal.

Application: Heavy modulus in 4D string compactification

$$m_{\phi} = 10^{10} \,\mathrm{GeV} \,, \, \Gamma_{\phi} = 10^{-7} \,\mathrm{GeV} \,, \, \phi_{\mathrm{ini}} = 10^{18} \,\mathrm{GeV}$$

Probe end of scalar era in GW experiments.

Generic properties

$$\Gamma_{\phi} \sim rac{m_{\phi}^3}{M_{
m Pl}^2} \,, \quad \phi_{
m ini} \sim M_{
m Pl} \,$$

Examples from the recent literature

- DM production during a scalar era driven by several moduli. [Rouzbeh Allahverdi, Jacek Osiński | 1812.10522]
 - Baryon cooling by milli-charged DM during a modulus-driven scalar era in order to explain the EDGES 21-cm signal.
 Mansi Dhuria 1 1812 11915

Application: Scalar era driven by a flavon field

Baryogenesis from flavon decays

[Mu-Chun Chen, Sevda Ipek, Michael Ratz | 1903.06211]

$$m_{\phi} = 3 \,\mathrm{TeV}\,,\; \Gamma_{\phi} = 10^{-13} \,\mathrm{GeV}\,,\; \phi_{\mathrm{ini}} = 10^{16} \,\mathrm{GeV}$$

Probe entropy production in GW experiments.

Froggatt-Nielsen flavor model

$$\boxed{ \mathscr{L} \sim \left(\frac{\mathbf{v} + \mathbf{\phi}}{\Lambda} \right)^{n_{ij}} \mathbf{\bar{e}}_{R}^{i} \ell_{L}^{j} \mathbf{\tilde{H}}}$$

Primordial flavon asymmetry translates into LR asymmetry

$$\phi
ightarrow e_R ar{\ell}_L H, \quad \phi^*
ightarrow ar{e}_R \ell_L ilde{H}$$

- e_R/\bar{e}_R do not equilibrate during flavon-driven scalar era
- 4 Electroweak sphalerons convert $\ell_L/\bar{\ell}_L$ asymmetry into a nonzero baryon asymmetry.

Conclusions

A broad class of BSM models may be tested in upcoming GW experiments.

- String moduli, flavon fields, supersymmetric axion partners, ...
- Important implications for other relics such as dark matter and the baryon asymmetry.

The scalar era represents an important experimental benchmark scenario.

- Highlights the complementarity of future GW experiments across the entire spectrum.
- Evidence for SD would change our understanding of particle physics and cosmology.

Future directions

- ► Relax assumptions w.r.t. primordial spectrum, initial field value, scalar potential, ...
- ► Self-consisted embedding in an inflation model that generates a blue-tilted spectrum.

Conclusions

A broad class of BSM models may be tested in upcoming GW experiments.

- String moduli, flavon fields, supersymmetric axion partners, ...
- Important implications for other relics such as dark matter and the baryon asymmetry.

The scalar era represents an important experimental benchmark scenario.

- ► Highlights the complementarity of future GW experiments across the entire spectrum.
- Evidence for SD would change our understanding of particle physics and cosmology.

Future directions

- ► Relax assumptions w.r.t. primordial spectrum, initial field value, scalar potential, ...
- Self-consisted embedding in an inflation model that generates a blue-tilted spectrum.

Thank you for your attention!