B-decay Discrepancies: How the Picture Changed After Moriond 2019

Diego Guadagnoli CNRS, LAPTh Annecy

B-decay Discrepancies: How the Picture Changed After Moriond 2019

Diego Guadagnoli CNRS, LAPTh Annecy

Overall message

The TH picture has evolved while, remarkably, staying coherent – in spite of all the constraints

Based on work with

J. Aebischer, W. Altmannshofer, M. Reboud, P. Stangl and D. M. Straub

4 groups of interesting datasets, w/ different challenges

1 $b \rightarrow s \mu\mu$ BR data < SM Challenge: $B \rightarrow light meson f.f.$'s

4 groups of interesting datasets, w/ different challenges

- 1 $b \rightarrow s \mu \mu BR data < SM$ Challenge: $B \rightarrow light meson f.f.$'s
- B → K* μμ angular data Challenge: charm loops

4 groups of interesting datasets, w/ different challenges

- 1 $b \rightarrow s \mu \mu BR data < SM$ Challenge: $B \rightarrow light meson f.f.$'s
- B → K* μμ angular data Challenge: charm loops
- **3** $b \rightarrow s \mu \mu / b \rightarrow s ee ratios$ Challenge: (mostly) stats

4......

4 groups of interesting datasets, w/ different challenges

- 1 $b \rightarrow s \mu \mu BR data < SM$ Challenge: $B \rightarrow light meson f.f.$'s
- B → K* μμ angular data Challenge: charm loops
- 6 $b \rightarrow s \mu \mu / b \rightarrow s ee ratios$ Challenge: (mostly) stats
- 4 $b \rightarrow c \tau v / b \rightarrow c \ell v$ ratios Challenge: stats + syst

- **1** (b \rightarrow s $\mu\mu$ BR data < SM)
- + (B \rightarrow K* $\mu\mu$ angular data)

- (b \rightarrow s $\mu\mu$ BR data < SM)
- + (B \rightarrow K* $\mu\mu$ angular data)

may be alleviated by more conservative TH assumptions

- $(b \rightarrow s \mu\mu BR data < SM)$
- + (B \rightarrow K* $\mu\mu$ angular data)

may be alleviated by more conservative TH assumptions

But

$$0 + 2 + 6$$
 $(R_{K(*)})$

Explicable (quantitatively) w/ two semi-leptonic operators

substantial improvement w.r.t. SM alone

*6*2.......

 $(b \rightarrow s \mu\mu BR data < SM)$

+ (B \rightarrow K* $\mu\mu$ angular data)

may be alleviated by more conservative TH assumptions

But

$$(R_{K(*)})$$

Explicable (quantitatively) w/ two semi-leptonic operators

substantial improvement w.r.t. SM alone

And

$$(R_{D(*)})$$

Explicable (quantitatively) w/ single-mediator simplified models

•

Our analysis includes the following data updates

(a) R_{κ} update from LHCb Run1 + 1/3 of Run2

$$R_{\kappa} \simeq 0.85 \ (1 \pm 7\%)$$

$$2.5\sigma$$

Our analysis includes the following data updates

(a) R_{ν} update from LHCb Run1 + 1/3 of Run2

$$R_{\kappa} \simeq 0.85 \ (1 \pm 7\%)$$

$$2.5\sigma$$

(b) R_{κ^*} update from Belle

$$R_{K^*} \simeq 0.90 \ (1 \pm 30\%)$$

(compatible w/ LHCb's $R_{\kappa*}$)

Our analysis includes the following data updates

(a) R_{κ} update from LHCb Run1 + 1/3 of Run2

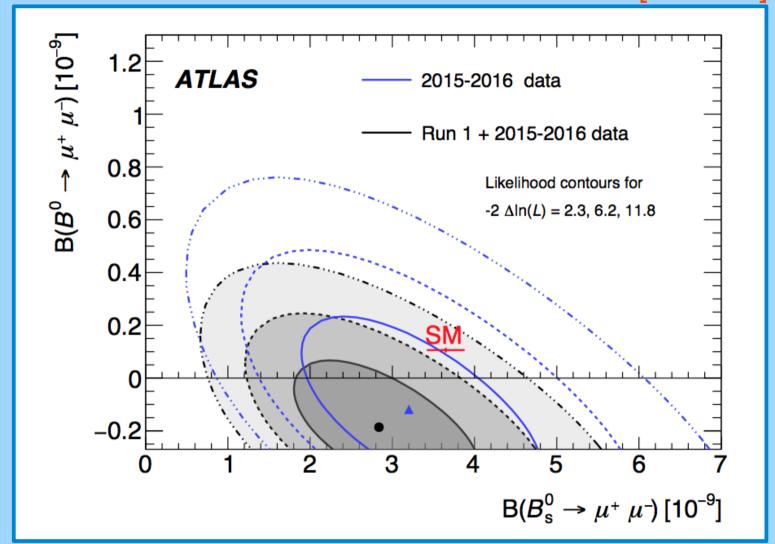
$$R_{\kappa} \simeq 0.85 \ (1 \pm 7\%)$$

(b) R_{κ^*} update from Belle

$$R_{\kappa*} \simeq 0.90 \ (1 \pm 30\%)$$

(compatible w/ LHCb's $R_{\kappa*}$)

(c) $B_s \rightarrow \mu\mu$ from ATLAS



Our analysis includes the following data updates

(a) R_{κ} update from LHCb Run1 + 1/3 of Run2

$$R_{\kappa} \simeq 0.85 \ (1 \pm 7\%)$$

(b) R_{κ^*} update from Belle

$$R_{\kappa^*} \simeq 0.90 \ (1 \pm 30\%)$$

 $R_{\kappa*} \simeq 0.90 (1 \pm 30\%)$ (compatible w/ LHCb's $R_{\kappa*}$)

- (c) $B_s \rightarrow \mu\mu$ from ATLAS
- (d) $\Lambda_h \to \Lambda \ell\ell$: A_{FR} and BR from LHCb
- (e) $b \rightarrow s \gamma \& b \rightarrow s g$ dipole transitions

EW-scale Effective-Theory picture

b → s EFT picture

One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right) \right]$$

One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]$$

About equal size & opposite sign in the SM (at the m_b scale)

One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]$$

About equal size & opposite sign in the SM (at the m_b scale)

$$(V - A) \times (V - A)$$
 interaction

One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]$$

About equal size & opposite sign in the SM (at the m_b scale)

$$(V-A) \times (V-A)$$
 interaction

The best-performing BSM scenarios to explain the data involve

$$O_9 \propto \bar{b}_L \gamma^{\lambda} s_L \cdot \bar{\mu} \gamma_{\lambda} \mu$$
 $O_{10} \propto \bar{b}_L \gamma^{\lambda} s_L \cdot \bar{\mu} \gamma_{\lambda} \gamma_5 \mu$

One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]$$

About equal size & opposite sign in the SM (at the m_b scale)

$$(V-A)\times(V-A)$$
 interaction

The best-performing BSM scenarios to explain the data involve

$$O_9 \propto \bar{b}_L \gamma^{\lambda} s_L \cdot \bar{\mu} \gamma_{\lambda} \mu$$
 $O_{10} \propto \bar{b}_L \gamma^{\lambda} s_L \cdot \bar{\mu} \gamma_{\lambda} \gamma_5 \mu$

- Specifically, either O₉ alone,
- or $O_9 O_{10}$ \Rightarrow again, $(V A) \times (V A)$ well-suited to UV-complete models

Compare w/ [Algueró et al.; Alok et al.; Ciuchini et al.; Kowalska et al.]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime bs\mu\mu}$	+0.09	[-0.07,+0.24]	[-0.23,+0.39]	0.5σ
$C_{10}^{bs\mu\mu}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41, +0.04]	1.6σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.05,+0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.62, -0.45]	[-0.70, -0.36]	6.5σ

Compare w/ [Algueró et al.; Alok et al.; Ciuchini et al.; Kowalska et al.]

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime bs\mu\mu}$	+0.09	[-0.07, +0.24]	[-0.23,+0.39]	0.5σ
$C_{10}^{bs\mu\mu}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41, +0.04]	1.6σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.05, +0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.62, -0.45]	[-0.70, -0.36]	6.5σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ ($\mu\mu$ -channel only)

Compare w/ [Algueró et al.; Alok et al.; Ciuchini et al.; Kowalska et al.]

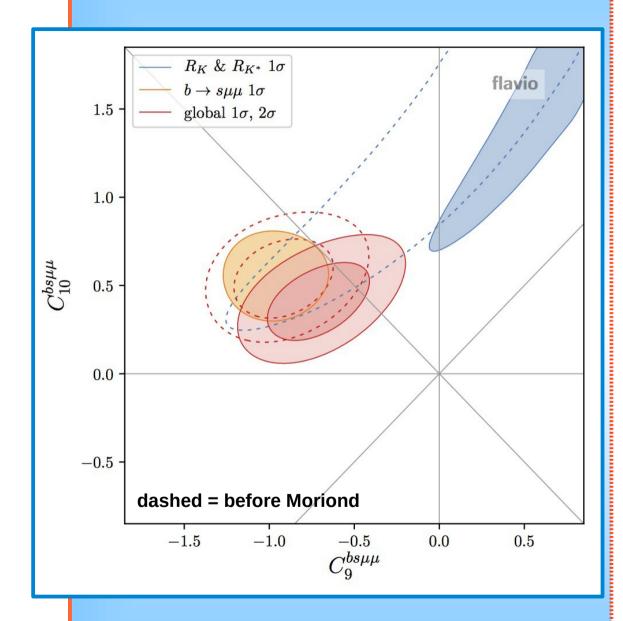
Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime bs\mu\mu}$	+0.09	[-0.07, +0.24]	[-0.23,+0.39]	0.5σ
$C_{10}^{bs\mu\mu}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41,+0.04]	1.6σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.05,+0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.62, -0.45]	[-0.70, -0.36]	6.5σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ ($\mu\mu$ -channel only)
- $C_9 = -C_{10}$ now better than C_9 alone chiefly because of $B_s \rightarrow \mu\mu$

Compare w/ [Algueró et al.; Alok et al.; Ciuchini et al.; Kowalska et al.]

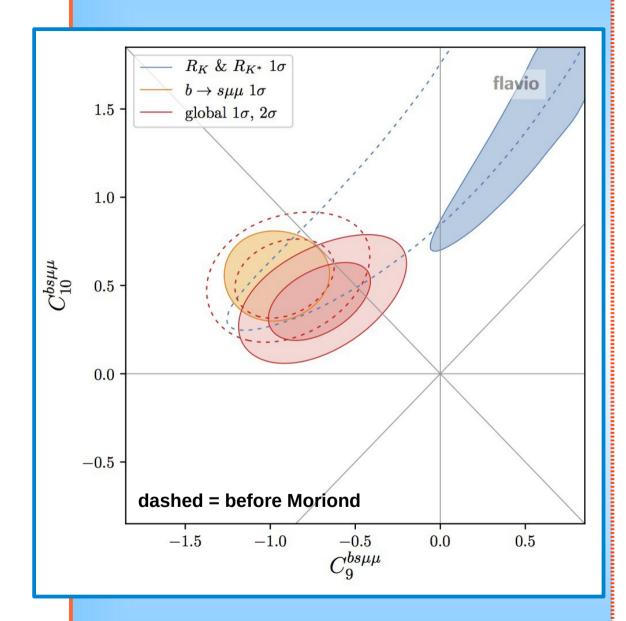
Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime bs\mu\mu}$	+0.09	[-0.07,+0.24]	[-0.23,+0.39]	0.5σ
$C_{10}^{bs\mu\mu}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41, +0.04]	1.6σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.05,+0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.62,-0.45]	[-0.70, -0.36]	6.5σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ ($\mu\mu$ -channel only)
- $C_9 = -C_{10}$ now better than C_9 alone chiefly because of $B_s \rightarrow \mu\mu$
- C_{10} alone also ok, but $B \rightarrow K^* \mu \mu$ unresolved



Main points

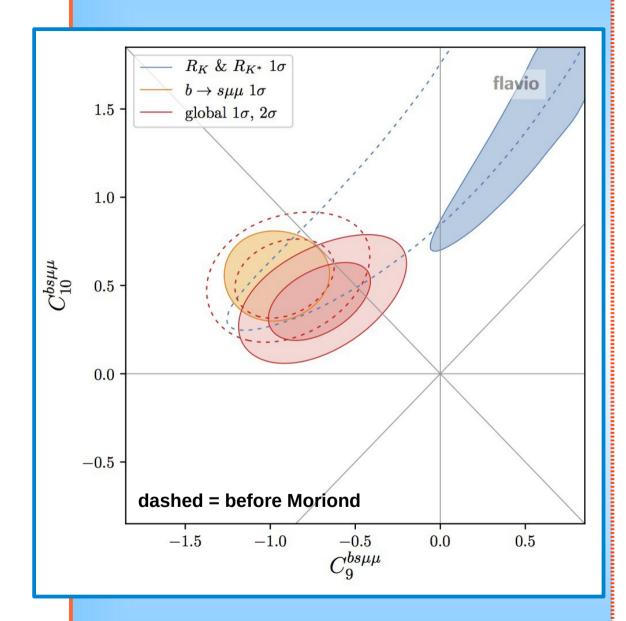
• $R_{K(*)}$ & $b \rightarrow s \mu \mu$ in perfect agreement before Moriond



Main points

- $R_{K(*)}$ & $b \rightarrow s \mu \mu$ in perfect agreement before Moriond
- now slight tension (in C_g dir.)

but see later for a UV interpretation



Main points

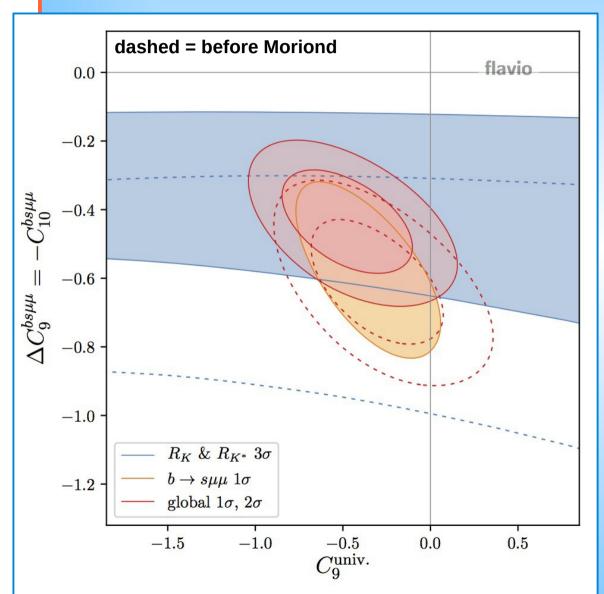
- $R_{\kappa(*)}$ & $b \rightarrow s \mu\mu$ in perfect agreement before Moriond
- now slight tension (in C_g dir.)

but see later for a UV interpretation

- also (not visible) slight tension between R_{κ} & R_{κ^*}
 - would be accommodated by RH quark currents, e.g. C₉'
 - but such shift would not accommodate B_s → μμ

• Note: a $C_9^{univ.}$ component would shift $b \to s \mu \mu$ data but $\underline{not} \ R_{K(^*)}$

• Note: a $C_9^{univ.}$ component would shift $b \to s \mu \mu$ data but <u>not</u> $R_{K(^*)}$



Notes

y-axis: µ-specific shift in

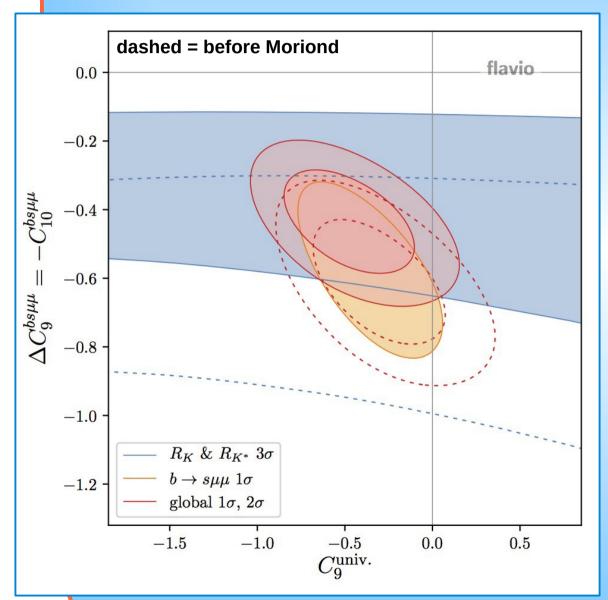
 $C_9 = -C_{10}$

x-axis: additional, lepton-univ.

shift in C₀ only

.....

• Note: a $C_9^{univ.}$ component would shift $b \to s \mu \mu$ data but <u>not</u> $R_{K(^*)}$



Notes

y-axis: μ -specific shift in

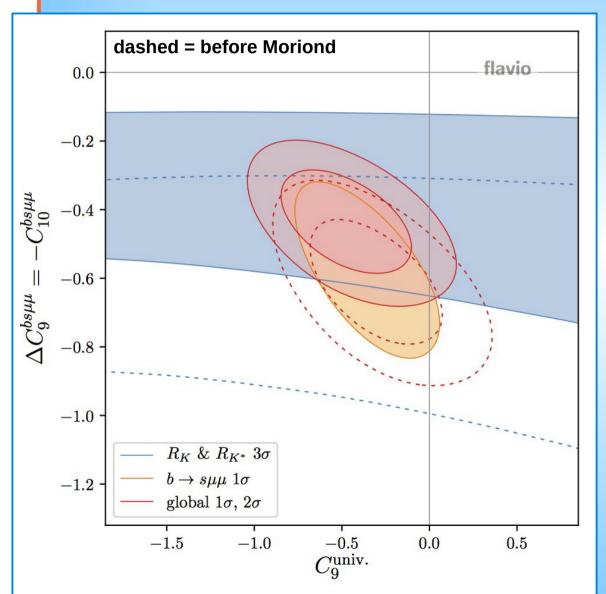
 $C_9 = -C_{10}$

x-axis: additional, lepton-univ.

shift in C_o only

- Post-Moriond data tend to prefer $C_9^{univ.} \neq 0$

• Note: a $C_9^{univ.}$ component would shift $b \to s \mu \mu$ data but <u>not</u> $R_{K(*)}$



Notes

y-axis: μ -specific shift in $C_{\circ} = -C_{10}$

x-axis: additional, lepton-univ. shift in C_{\circ} only

- Post-Moriond data tend to prefer C_g^{univ.} ≠ 0
- This suggests a well-defined interpretation within SMEFT [Crivellin-Greub-Müller-Saturnino]

Going above the EW scale without introducing new d.o.f.: The SM EFT

SMEFT basics

• If NP is at a scale $\Lambda \gg M_{EW}$, with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: $SU(3)_c \times SU(2)_t \times U(1)_y$

This defines the SMEFT

SMEFT basics

• If NP is at a scale $\Lambda \gg M_{EW}$, with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: $SU(3)_c \times SU(2)_t \times U(1)_y$

This defines the SMEFT

After defining a (non-redundant) op. basis for SMEFT
 [B. Grzadkowski et al., JHEP 2010]

contributions to muonic $C_9 = -C_{10}$ or $C_9^{univ.}$ can come from:

SMEFT basics

• If NP is at a scale $\Lambda \gg M_{EW}$, with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: $SU(3)_c \times SU(2)_t \times U(1)_y$

This defines the SMEFT

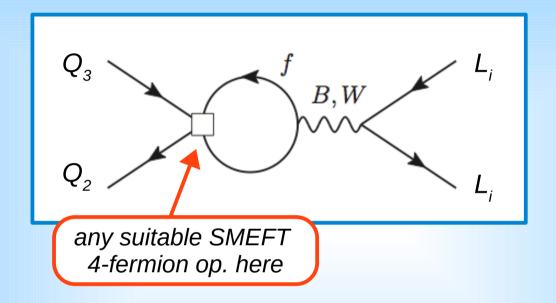
- After defining a (non-redundant) op. basis for SMEFT [B. Grzadkowski et al., JHEP 2010] contributions to muonic $C_9 = -C_{10}$ or $C_9^{univ.}$ can come from:
 - \bigcirc SMEFT operators directly matching onto $O_{9,10}$

$$[O_{LQ}^{(1)}]_{2223} = \bar{L}_2 \gamma^{\lambda} L_2 \cdot \bar{Q}_2 \gamma_{\lambda} Q_3$$

$$[O_{LQ}^{(3)}]_{2223} = \bar{L}_2 \gamma^{\lambda} \sigma^a L_2 \cdot \bar{Q}_2 \gamma_{\lambda} \sigma^a Q_3$$

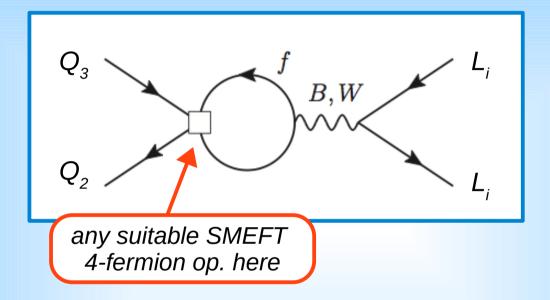
SMEFT basics

2 Besides, contribs. to $C_9^{\text{univ.}}$ can come from RGE effects, in particular:

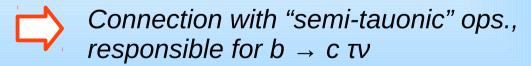


SMEFT basics

2 Besides, contribs. to $C_9^{\text{univ.}}$ can come from RGE effects, in particular:



Case f = τ especially interesting

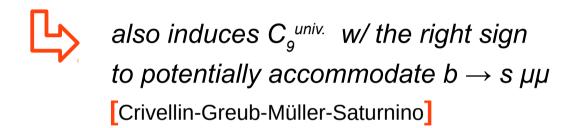


- Smoking gun of such scenario: large enhancement in $b \rightarrow s \tau \tau$ [B. Capdevila et al., PRL 2018]

•
$$[O_{LQ}^{(3)}]_{3323} \supset \bar{\tau} \gamma_L^{\lambda} \nu \cdot \bar{c} \gamma_{\lambda L} b$$

•
$$[O_{LQ}^{(3)}]_{3323} \supset \overline{\tau} \gamma_L^{\lambda} \nu \cdot \overline{c} \gamma_{\lambda L} b$$

can explain R_{D(*)}



•
$$[O_{LQ}^{(3)}]_{3323} \supset \overline{\tau} \gamma_L^{\lambda} \nu \cdot \overline{c} \gamma_{\lambda L} b$$

 \Rightarrow can explain $R_{D(*)}$

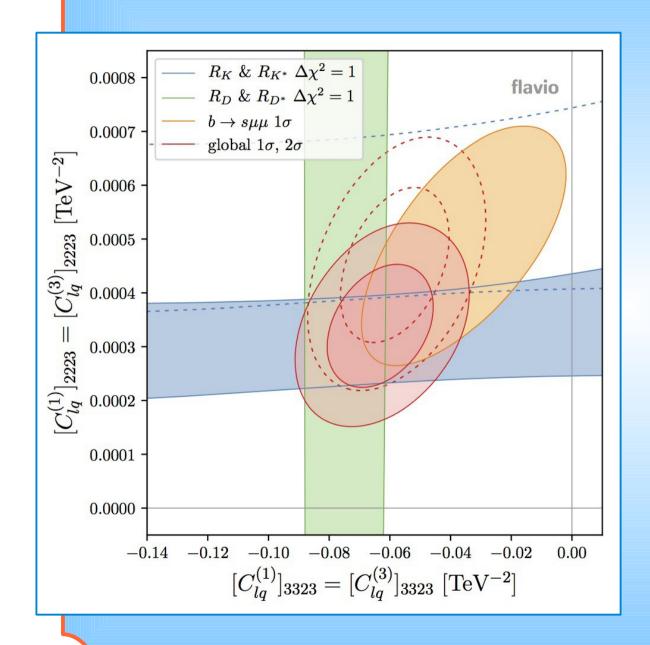
also induces $C_9^{univ.}$ w/ the right sign to potentially accommodate $b \to s \mu\mu$ [Crivellin-Greub-Müller-Saturnino]

•
$$[O_{LQ}^{(1) \text{ or}(3)}]_{2223} \supset \bar{\mu} \gamma_L^{\lambda} \mu \cdot \bar{s} \gamma_{\lambda L} b$$

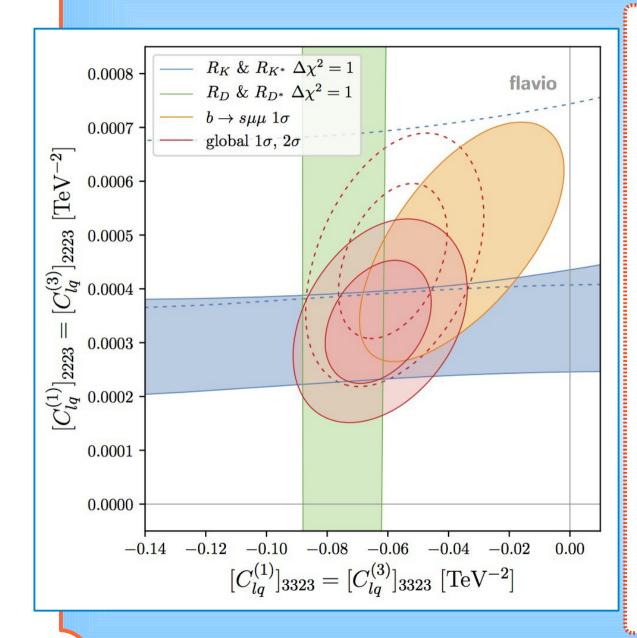
- $[O_{LQ}^{(3)}]_{3323} \supset \overline{\tau} \gamma_L^{\lambda} v \cdot \overline{c} \gamma_{\lambda L} b$
 - can explain R_{D(*)}
 - also induces $C_9^{univ.}$ w/ the right sign to potentially accommodate $b \rightarrow s \mu\mu$ [Crivellin-Greub-Müller-Saturnino]
- $[O_{LQ}^{(1) \text{ or}(3)}]_{2223} \supset \bar{\mu} \gamma_L^{\lambda} \mu \cdot \bar{s} \gamma_{\lambda L} b$
 - can explain R_{κ(*)}
- Caveat: one must have $[C_{LQ}^{(1)}]_{3323} \simeq [C_{LQ}^{(3)}]_{3323}$ to avoid the $B \to K(*)$ vv constraint

Buras-Girrbach-Niehoff-Straub

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323}$$
 vs. $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223}$

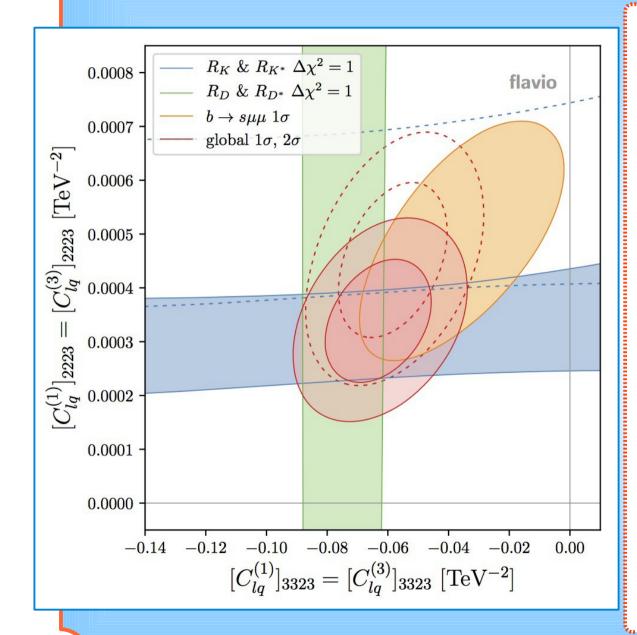


$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323}$$
 vs. $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223}$



 $R_{K(*)}$ (blue) and $b \rightarrow s \mu\mu$ (orange) were in perfect agreement (y-axis)

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323}$$
 vs. $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223}$

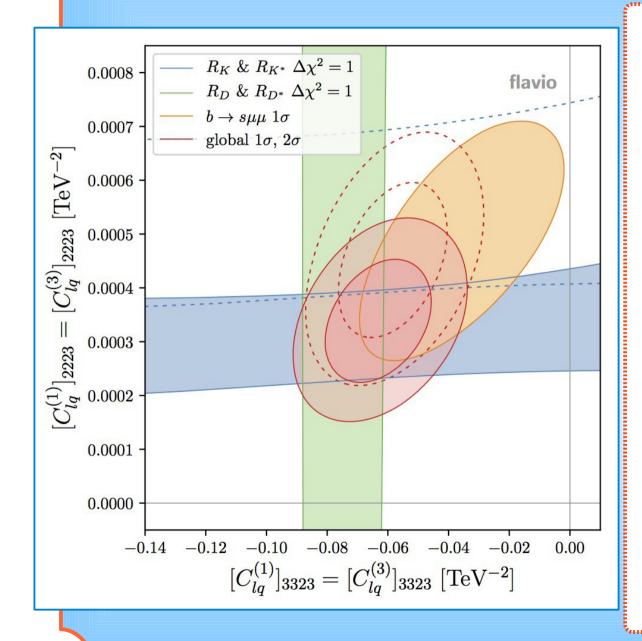


 $R_{K(*)}$ (blue) and $b \rightarrow s \mu\mu$ (orange) were in perfect agreement (y-axis)

in a region close to 0 in the x-axis

 $R_{D^{(*)}}$ not explained

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323}$$
 vs. $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223}$



 $R_{K(*)}$ (blue) and $b \rightarrow s \mu\mu$ (orange) were in perfect agreement (y-axis)

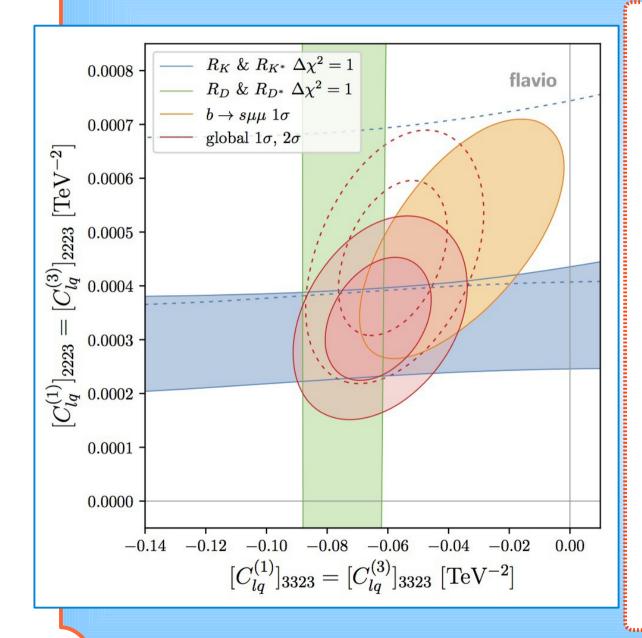
in a region close to 0 in the x-axis

 $R_{D(*)}$ not explained

After Moriond

 $R_{\kappa(*)}$ and $b \rightarrow s \mu \mu$ intersect in a region corresponding to x-axis values well below 0

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323}$$
 vs. $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223}$



 $R_{K(*)}$ (blue) and $b \rightarrow s \mu\mu$ (orange) were in perfect agreement (y-axis)

in a region close to 0 in the x-axis

 $R_{D(*)}$ not explained

After Moriond

 $R_{\kappa(*)}$ and $b \to s \mu\mu$ intersect in a region corresponding to x-axis values well below 0

This region turns out to overlap substantially with the $R_{D(*)}$ region (green)

Beyond EFTs:

The picture within "simplified" models

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

[Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

[Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

Define the couplings:

$$\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$$

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

[Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

Define the couplings:

$$\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$$

$$\delta R_{K(*)|in\,\mu\,channel} \propto g_{lq}^{22}$$
 & g_{lq}^{23}

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015

Define the couplings:

$$\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$$

$$\delta R_{K(*)\,|in\,\mu\,channel} \propto g_{lq}^{22} \& g_{lq}^{23} \ \delta R_{D(*)\,|in\, au\,channel} \propto g_{lq}^{32} \& g_{lq}^{33}$$

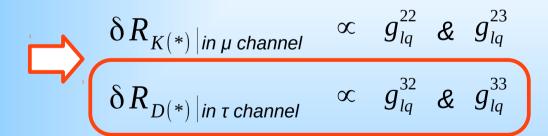
• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

[Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

Define the couplings:

$$\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$$



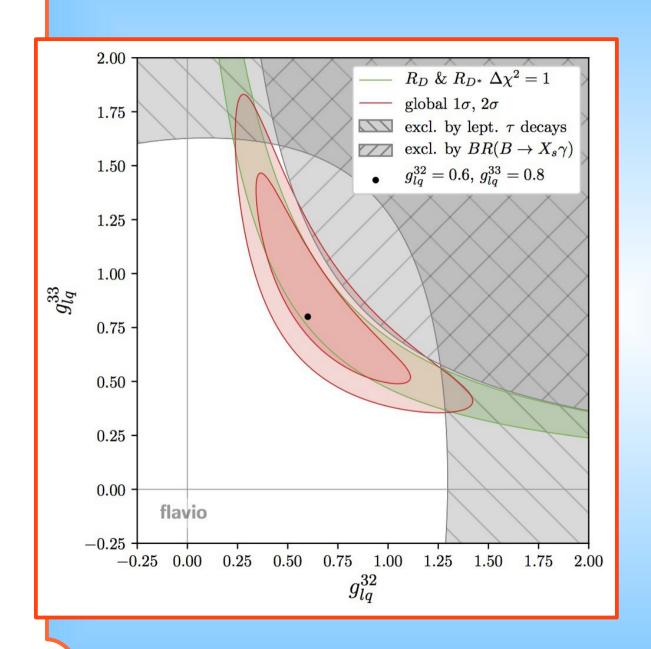
The same

these couplings also famously constrained by

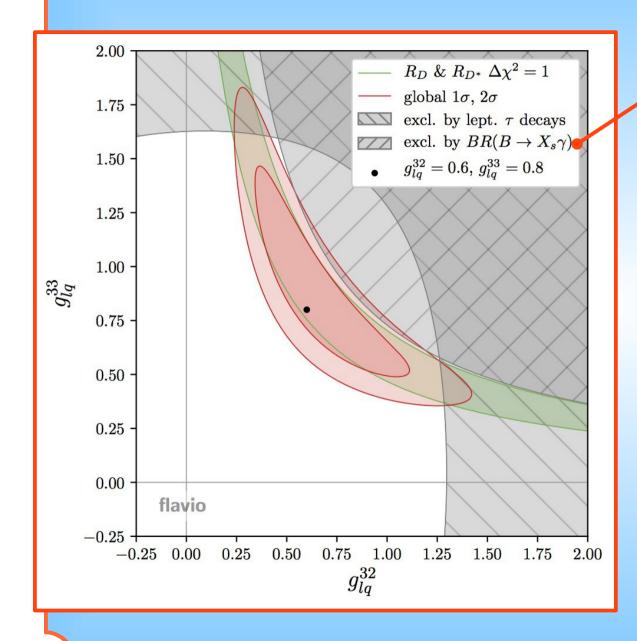
$$T \rightarrow \ell VV$$
 [Feruglio-Paradisi-Pattori]

(hence far from obvious that an $R_{D(*)}$ description achievable)

 $U_1 LQ: g_{lq}^{32} vs. g_{lq}^{33}$



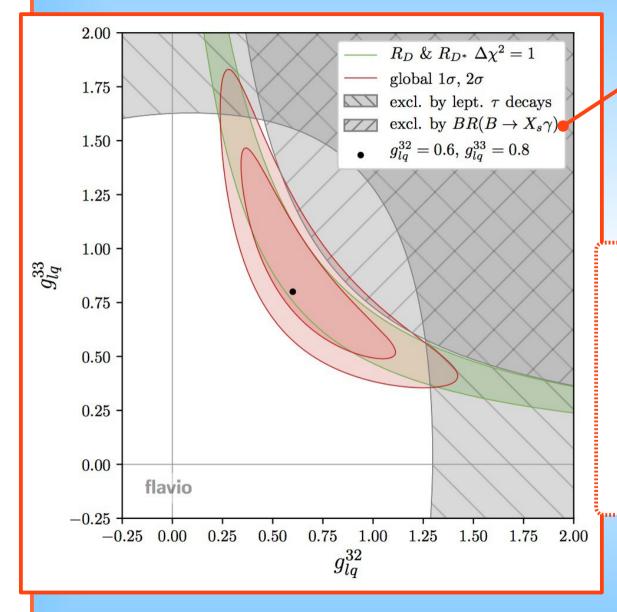
$U_1 LQ: g_{lq}^{32} vs. g_{lq}^{33}$



Model-dependent constraint

See discussion in [Cornella-Fuentes-Isidori, 2019; Calibbi-Crivellin-Li, 2018; Bordone *et al.*, 2018]

$U_1 LQ: g_{lq}^{32} vs. g_{lq}^{33}$



Model-dependent constraint

See discussion in

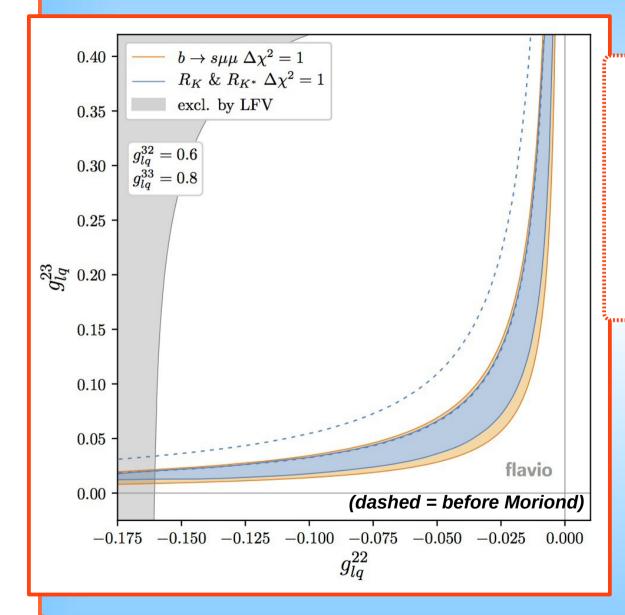
[Cornella-Fuentes-Isidori, 2019;

Calibbi-Crivellin-Li, 2018;

Bordone *et al.*, 2018

- $R_{D(*)}$ and $\tau \to \ell$ vv select a non-trivial region
- We pick a benchmark point, then constrain the other two couplings

$U_1 LQ: g_{lq}^{22} vs. g_{lq}^{23}$



The plane of muonic couplings shows that the picture works better after than before Moriond

• The $R_{K(*)}$ and $b \rightarrow s \mu \mu$ regions now perfectly overlap

......

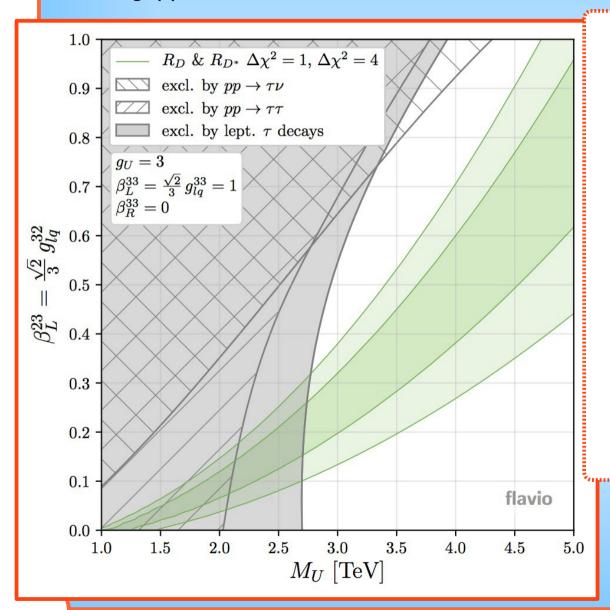
U₁ **LQ**: direct constraints

 $_{M}$

Aren't such tauonic couplings also constrained by direct searches? E.g. $pp \rightarrow \tau \tau$ or τv

U₁ LQ: direct constraints

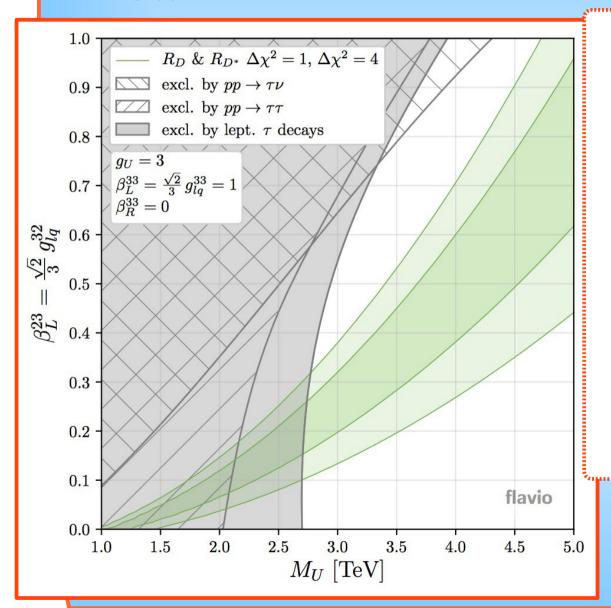
Aren't such tauonic couplings also constrained by direct searches? E.g. $pp \rightarrow \tau \tau$ or τv



For the sake of comparison, we tuned coupling values to those used in [Baker-Fuentes-Isidori-König]

U₁ LQ: direct constraints

Aren't such tauonic couplings also constrained by direct searches? E.g. $pp \rightarrow \tau \tau$ or τv

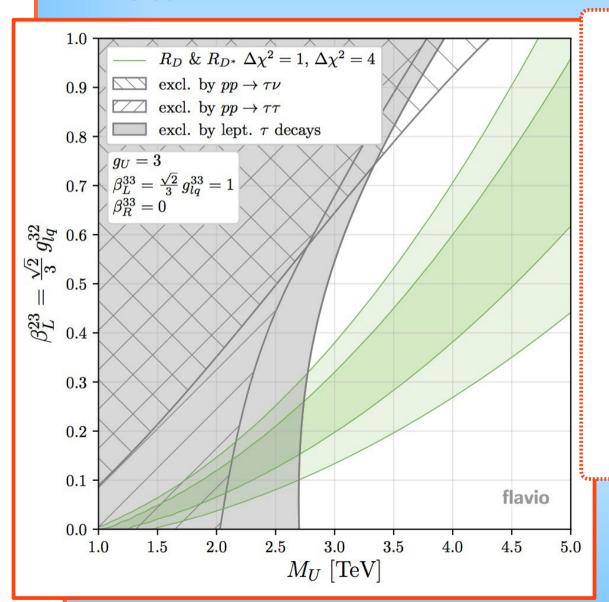


For the sake of comparison, we tuned coupling values to those used in [Baker-Fuentes-Isidori-König]

With $g_{lq}^{3i} \neq 0$ (as required by $R_{D(*)}$) LUV constraints are <u>stronger</u> than direct ones

U₁ LQ: direct constraints

Aren't such tauonic couplings also constrained by direct searches? E.g. $pp \rightarrow \tau \tau$ or τv



For the sake of comparison, we tuned coupling values to those used in [Baker-Fuentes-Isidori-König]

With $g_{lq}^{3i} \neq 0$ (as required by $R_{D(*)}$) LUV constraints are stronger than direct ones

Lower bound $M_{U} > 2.7 \text{ TeV}$ due to the large couplings chosen here (e.g. $g_{lq}^{32} \approx 2.1$)

I.e. it doesn't apply in general

 Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks

- Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks
- The solution with muonic $C_9 = -C_{10}$ now favoured over pure C_9 Welcome news from the standpoint of UV completions

- Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks
- The solution with muonic $C_9 = -C_{10}$ now favoured over pure C_9 Welcome news from the standpoint of UV completions
- Even better description of data obtained by allowing for additional $C_9^{univ.}$

- Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks
- The solution with muonic $C_9 = -C_{10}$ now favoured over pure C_9 Welcome news from the standpoint of UV completions
- Even better description of data obtained by allowing for additional C₉^{univ.}
- Interestingly, such effect is RG-generated from 4-f operators above the EW scale, in particular semi-tauonic ones, able to explain b → c discrepancies

- Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks
- The solution with muonic $C_9 = -C_{10}$ now favoured over pure C_9 Welcome news from the standpoint of UV completions
- Even better description of data obtained by allowing for additional $C_9^{univ.}$
- Interestingly, such effect is RG-generated from 4-f operators above the EW scale, in particular semi-tauonic ones, able to explain b → c discrepancies
- Also interestingly, this whole picture finds a natural realization in the U₁-LQ model