B-decay Discrepancies: How the Picture Changed After Moriond 2019

Diego Guadagnoli CNRS, LAPTh Annecy

B-decay Discrepancies: How the Picture Changed After Moriond 2019

Diego Guadagnoli CNRS, LAPTh Annecy

Overall message

The TH picture has evolved while, remarkably, staying coherent – in spite of all the constraints

Based on work with J. Aebischer, W. Altmannshofer, M. Reboud, P. Stangl and D. M. Straub

Basic TH considerations

\n- (b
$$
\rightarrow
$$
 s $\mu\mu$ BR data < SM)
\n- **2** $(B \rightarrow K^* \mu\mu$ angular data)
\n

Basic TH considerations *(b → s* μμ *BR data < SM) may be alleviated by + more conservative TH* ➋ *(B → K** μμ *angular data) assumptions But* ➌ *+* ➋*+ Explicable (quantitatively) w/ two semi-leptonic operators* $(R_{K/k})$ *substantial improvement* $\epsilon_{\rm w}$ *w.r.t. SM alone*

EW-scale

Effective-Theory picture

One starts from the following Hamiltonian

$$
H(\overline{b} \rightarrow \overline{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\overline{b}_L \gamma^{\lambda} s_L \cdot \left(C_9^{(\mu)} \overline{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \overline{\mu} \gamma_{\lambda} \gamma_5 \mu \right) \right]
$$

b
$$
\rightarrow
$$
 s EFT picture
\n• One starts from the following Hamiltonian
\n
$$
H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{cb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \Big[\bar{b}_L \gamma^k s_L \cdot C_g^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \Big]
$$
\n(About equal size & opposite sign
\n*in the SM (at the m_b scale)*
\n $(V - A) \times (V - A)$ interaction

b
$$
\rightarrow
$$
 s EFT picture
\n• One starts from the following Hamiltonian
\n
$$
H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_b^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]
$$
\n(20)

The best-performing BSM scenarios to explain the data involve

$$
O_{9} \propto \bar{b}_{L} \gamma^{\lambda} s_{L} \cdot \bar{\mu} \gamma_{\lambda} \mu \qquad O_{10} \propto \bar{b}_{L} \gamma^{\lambda} s_{L} \cdot \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu
$$

 b → s EFT picture *One starts from the following Hamiltonian* 4*G^F* αem * λ (μ) (μ) *H*(¯*b*→¯*s*μμ) = − [¯*b^L* γ *V tb Vts s ^L*⋅(*C*⁹ μ¯ γλμ + *C*¹⁰ μ¯ γ^λ γ5μ)] 4 π √2 *About equal size & opposite sign in the SM (at the m^b scale) (V – A)* × *(V – A) interaction (V – A) x (V – A) interaction*

The best-performing BSM scenarios to explain the data involve

$$
O_{9} \propto \bar{b}_{L} \gamma^{\lambda} s_{L} \cdot \bar{\mu} \gamma_{\lambda} \mu \qquad O_{10} \propto \bar{b}_{L} \gamma^{\lambda} s_{L} \cdot \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu
$$

- *Specifically, either O⁹ alone,*
-

or O⁹ – O¹⁰ again, (V – A) × *(V – A)*

well-suited to UV-complete models

Compare w/ **[**Algueró *et al.*; Alok *et al.*; Ciuchini *et al.*; Kowalska *et al.***]**

 α unnumumumumumumumumumumumumumumumum

Compare w/ **[**Algueró *et al.*; Alok *et al.*; Ciuchini *et al.*; Kowalska *et al.***]**

Two scenarios stand out: C_g *alone or* C_g = $-C_{10}$ *(µµ-channel only)*

Compare w/ **[**Algueró *et al.*; Alok *et al.*; Ciuchini *et al.*; Kowalska *et al.***]**

- *Two scenarios stand out:* C_g *alone or* C_g = $-C_{10}$ *(µµ-channel only)* \blacksquare
- C_{9} = C_{10} now better than C_{9} alone chiefly because of B_{s} → $\mu\mu$

Compare w/ **[**Algueró *et al.*; Alok *et al.*; Ciuchini *et al.*; Kowalska *et al.***]**

- *Two scenarios stand out:* C_g *alone or* C_g = $-C_{10}$ *(µµ-channel only)*
- C_{9} = C_{10} now better than C_{9} alone chiefly because of B_{s} → $\mu\mu$
- *C*₁₀ alone also ok, but $B \to K^*$ μμ unresolved

Main points

 $R_{K(*)}$ & $b \rightarrow s \mu \mu$ *in perfect agreement before Moriond* \bullet

«политические политические политические политические политические политические политические политические полит

Main points

- $R_{K(*)}$ & b \rightarrow s $\mu\mu$ *in perfect agreement before Moriond* \bullet
- *now slight tension (in C⁹ dir.)* \bullet

but see later for a UV interpretation

Main points

 \bullet

 $R_{K(*)}$ & b \rightarrow s $\mu\mu$ *in perfect agreement before Moriond* \bullet

now slight tension (in C⁹ dir.) \bullet

but see later for a UV interpretation

- *also (not visible) slight tension between R_K & R_{K*}*
	- *would be accommodated by RH quark currents, e.g. C⁹ '*
	- *but such shift would not accommodate B s → μμ*

D. Guadagnoli, B discrepancies after Moriond 2019

Univ. vs. non-univ. Wilson coeffs.

 ω . The commutation is a construction of the commutation is a construction of the construction of η_i

 \bullet *Note: a* C₉ ^{*univ.*} *component would shift b → s μμ data but <u>not</u> R_{K(*)}*

D. Guadagnoli, B discrepancies after Moriond 2019

without introducing new d.o.f.: The SM EFT Going above the EW scale

If NP is at a scale Λ ≫ *MEW, with nothing new in between*

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3) $_c \times$ SU(2) $_L \times$ U(1) $_{\gamma}$

This defines the SMEFT

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3) $_c \times$ SU(2) $_L \times$ U(1) $_{\gamma}$

This defines the SMEFT

 SMEFT basics

 After defining a (non-redundant) op. basis for SMEFT **[***B. Grzadkowski et al., JHEP 2010***]** *contributions to muonic* C_{g} *=* $-C_{_{10}}$ *or* $C_{g}^{\textit{univ.}}$ *can come from:* *If NP is at a scale Λ* ≫ *MEW, with nothing new in between*

 SMEFT basics

➊

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3) $_c \times$ SU(2) $_L \times$ U(1) $_{\gamma}$

This defines the SMEFT

 After defining a (non-redundant) op. basis for SMEFT **[***B. Grzadkowski et al., JHEP 2010***]** *contributions to muonic* C_{g} *=* $-C_{_{10}}$ *or* $C_{g}^{\textit{univ.}}$ *can come from:*

SMEFT operators directly matching onto O9,10

 $[\,O_{LQ}^{(1)}\,]_{2223} \;=\; \,\overline{L}_{2}\, \chi^{\lambda}\, L_{2} \cdot \bar{Q}_{2}\, \gamma_{\lambda} Q_{3}$

$$
[O_{LQ}^{(3)}]_{2223} = \bar{L}_2 \gamma^{\lambda} \sigma^a L_2 \cdot \bar{Q}_2 \gamma_{\lambda} \sigma^a Q_3
$$

\bullet *4-fermion, semi-tauonic ops. can explain R_{D(*)}* $[\, O^{(3)}_{LQ}]_{\rm 3323} \, \supset \, \bar{\tau} \, \chi^{\lambda}_{\scriptscriptstyle L} \nu \cdot \bar{c} \, \chi_{\lambda \,\, L} b$ *also induces C⁹ univ. w/ the right sign to potentially accommodate b → s μμ* **[**Crivellin-Greub-Müller-Saturnino**]**

(**1**) (**3**) (**1**) (**3**) $\left[\boldsymbol{C}_{LQ}^{\text{\tiny (1)}}\right]$ \int_{3323} = $\int C_{LQ}^{(3)}$ \int_{3323} **vs.** $\left[C_{LQ}^{(1)}\right]$ \int_{2223} = $\left[C_{LQ}^{(3)}\right]$]**2223** R_K & R_{K^*} $\Delta \chi^2 = 1$ 0.0008 flavio R_D & R_{D^*} $\Delta \chi^2 = 1$ $b \rightarrow s \mu \mu$ 1 σ 0.0007 $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$ [TeV⁻²]
 0.0005
 0.0003
 0.0003 global 1σ , 2σ 0.0006 0.0004 0.0003 0.0001 0.0000 $\begin{bmatrix} -0.14 & -0.12 & -0.10 & -0.08 & -0.06 & -0.04 & -0.02 \ \begin{bmatrix} C_{lq}^{(1)} \end{bmatrix} 3323} = \begin{bmatrix} C_{lq}^{(3)} \end{bmatrix} 3323} \begin{bmatrix} \text{TeV}^{-2} \end{bmatrix}$ 0.00

D. Guadagnoli, B discrepancies after Moriond 2019

Beyond EFTs:

The picture within "simplified" models

The U¹ leptoquark

U1 ~ (**3**, **1**) *2/3 is the only single mediator known to yield*

$$
[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0 \quad \& \& [C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0
$$

[*Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015***]**

 The U¹ leptoquark

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

U1 ~ (**3**, **1**) *2/3 is the only single mediator known to yield*

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$ && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ **[***Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015***]**

Define the couplings:

 $\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$

www.communication.com/www.com/www.com/www.com/ **The U¹ leptoquark**

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

U1 ~ (**3**, **1**) *2/3 is the only single mediator known to yield*

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$ && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ **[***Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015***]**

Define the couplings:

$$
\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}
$$
\n
$$
\sum_{l=1}^{\infty} \delta R_{K(\ast)} |_{in \mu \text{ channel}} \propto g_{lq}^{22} \& g_{lq}^{23}
$$

www.communication.com/www.com/www.com/www.com/ **The U¹ leptoquark**

Consider the following Hamiltonian U1 ~ (**3**, **1**) *2/3 is the only single mediator known to yield*

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$ && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ **[***Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015***]**

Define the couplings:

$$
\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}
$$
\n
$$
\sum_{i=1}^{\infty} \frac{\delta R_{K(\ast)} |_{in \mu \text{ channel}}} {\delta R_{D(\ast)} |_{in \tau \text{ channel}}} \propto g_{lq}^{22} \& g_{lq}^{23}
$$

www.communication.com/www.com/www.com/www.com/ **The U¹ leptoquark**

Consider the following Hamiltonian U1 ~ (**3**, **1**) *2/3 is the only single mediator known to yield*

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$ && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ **[***Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015***]**

Define the couplings:

$$
\mathcal{L}_{U_1} \supset g_{lq}^{ji} \overline{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}
$$
\n
$$
\delta R_{K(*)|in\mu\text{ channel}} \propto g_{lq}^{22} \& g_{lq}^{23}
$$
\n
$$
\delta R_{D(*)|in\tau\text{ channel}} \propto g_{lq}^{32} \& g_{lq}^{33}
$$
\n
$$
\delta R_{D(*)|in\tau\text{ channel}}
$$

ammuniminiminiminiminiminiminiminiminin_i, **U**₁ **LQ:** g_{lq}^{32} *vs*. g_{lq}^{33}

Aren't such tauonic couplings also constrained by direct searches? E.g. pp → ττ or τν

Aren't such tauonic couplings also constrained by direct searches? E.g. pp $\rightarrow \tau \tau$ *or* τv

D. Guadagnoli, B discrepancies after Moriond 2019

Aren't such tauonic couplings also constrained by direct searches? E.g. pp $\rightarrow \tau \tau$ *or* τv

D. Guadagnoli, B discrepancies after Moriond 2019

Aren't such tauonic couplings also constrained by direct searches? E.g. pp $\rightarrow \tau \tau$ *or* τv

, viiminiminiminiminiminiminiminin

Conclusions *Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks* • The solution with muonic $C_{9} = - C_{10}$ now favoured over pure C_{9} *Welcome news from the standpoint of UV completions*

- *Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks*
- The solution with muonic $C_{9} = C_{10}$ now favoured over pure C_{9} *Welcome news from the standpoint of UV completions*
- *Even better description of data obtained by allowing for additional C⁹ univ.*

- *Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks*
- The solution with muonic $C_{9} = C_{10}$ now favoured over pure C_{9} *Welcome news from the standpoint of UV completions*
- *Even better description of data obtained by allowing for additional C⁹ univ.*
- *Interestingly, such effect is RG-generated from 4-f operators above the EW scale, in particular semi-tauonic ones, able to explain b → c discrepancies*

- *Semi-leptonic B-decay data still displays a clear preference for new effects in 4-f semi-leptonic operators w/ LH quarks*
- The solution with muonic $C_{9} = C_{10}$ now favoured over pure C_{9} *Welcome news from the standpoint of UV completions*
- *Even better description of data obtained by allowing for additional C⁹ univ.*
- *Interestingly, such effect is RG-generated from 4-f operators above the EW scale, in particular semi-tauonic ones, able to explain b → c discrepancies*
- *Also interestingly, this whole picture finds a natural realization in the U¹ -LQ model*