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Overall message

The TH picture has evolved while, remarkably, 
staying coherent – in spite of all the constraints
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Challenge:  B → light meson f.f.’s

➋ B → K* μμ  angular data

Challenge:  charm loops

➌ b → s μμ  /  b → s ee  ratios

Challenge:  (mostly) stats

➍ b → c τν  /  b → c ℓν  ratios

Challenge:  stats + syst
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 (b → s μμ  BR data < SM) may be alleviated by
more conservative TH

assumptions➋ (B → K* μμ  angular data)

But

➌
(R

K(*)
)

Explicable (quantitatively) 
w/  two semi-leptonic operators

➍

+

 ➋+ +

And

➌
(R

D(*)
)

 ➋+ + + Explicable (quantitatively) 
w/  single-mediator
simplified models

☞ substantial improvement
w.r.t. SM alone
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Our analysis includes the following data updates

R
K
 update from LHCb Run1 + 1/3 of Run2

R
K
  0.85 (1 ± 7%)                     2.5

(a)

R
K*

 update from Belle(b)

R
K*

  0.90 (1 ± 30%) (compatible w/ LHCb’s R
K* 

)

B
s
 → μμ from ATLAS(c)

Λ
b
 → Λ ℓℓ :  A

FB
  and BR from LHCb(d)

b → s γ  &  b → s g  dipole transitions(e)



  

EW-scale 

Effective-Theory picture



  



H ( b̄→ s̄μμ) = −
4GF
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V tb
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αem
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(μ) μ̄ γλ γ5μ) ]

   b → s EFT picture

 One starts from the following Hamiltonian
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 The best-performing BSM scenarios to explain the data involve

O9 ∝ b̄Lγ
λ sL⋅μ̄ γλμ O10 ∝ b̄L γ

λ sL⋅μ̄ γλγ5μ

Specifically, either O
9
 alone,

or O
9
 –  O

10

well-suited to UV-complete models

again,  (V –  A) × (V – A)

   b → s EFT picture



  

Consider the following Hamiltonian

  1-Wilson-coeff. picture
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R
K(*)

  & b → s μμ   in perfect
agreement before Moriond

now slight tension (in C
9
 dir.)

also (not visible) slight
tension between R

K
  &  R

K*

would be accommodated 
by RH quark currents, 
e.g. C

9
’

but such shift would not
accommodate B

s
 → μμ

Main points

dashed = before Moriond







but see later for a 
UV interpretation
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  Univ. vs. non-univ. Wilson coeffs.
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 Note:  a C
9
univ.  component would shift  b → s μμ data  but  not  R

K(*)

dashed = before Moriond

Notes

y-axis:  μ-specific shift in
            C

9
 = – C

10

x-axis:  additional, lepton-univ.
            shift in C

9
 only

Post-Moriond data 
tend to prefer C

9
univ.  ≠ 0

This suggests a well-defined
interpretation within SMEFT
[Crivellin-Greub-Müller-Saturnino]



  

without introducing new d.o.f.:

The SM EFT

Going above the EW scale
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Besides, contribs. to C
9
univ.  can come from RGE effects, in particular:➋

Case f = τ  especially interesting

Connection with “semi-tauonic” ops.,
responsible for b → c τν

  SMEFT basics

Smoking gun of such scenario: large enhancement in b → s τ τ

Q
3

Q
2

L
i

L
i

any suitable SMEFT 
4-fermion op. here

[B. Capdevila et al., PRL 2018]



  



4-fermion, semi-tauonic ops.

[OLQ
(3) ]3323 ⊃ τ̄ γL

λν⋅ c̄ γλ Lb
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(1)or(3 )]2223 ⊃ μ̄ γL
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Caveat: one must have

to avoid the B → K(*) νν  constraint

[Buras-Girrbach-Niehoff-Straub]



  

  

D. Guadagnoli, B discrepancies after Moriond 2019

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223



  

  

D. Guadagnoli, B discrepancies after Moriond 2019

Before Moriond (dashed)

R
K(*)

  (blue) and b → s μμ (orange)

were in perfect agreement (y-axis)

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223



  

  

D. Guadagnoli, B discrepancies after Moriond 2019

Before Moriond (dashed)

R
K(*)

  (blue) and b → s μμ (orange)

were in perfect agreement (y-axis)

in a region close to 0 
in the x-axis

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223

☞

R
D(*)

 not explained



  

  

D. Guadagnoli, B discrepancies after Moriond 2019

Before Moriond (dashed)

R
K(*)

  (blue) and b → s μμ (orange)

were in perfect agreement (y-axis)

in a region close to 0 
in the x-axis

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223

☞

R
D(*)

 not explained

After Moriond

R
K(*) 

 and b → s μμ intersect in a

region corresponding to x-axis
values well below 0



  

  

D. Guadagnoli, B discrepancies after Moriond 2019

Before Moriond (dashed)

R
K(*)

  (blue) and b → s μμ (orange)

were in perfect agreement (y-axis)

in a region close to 0 
in the x-axis

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223

☞

R
D(*)

 not explained

After Moriond

R
K(*) 

 and b → s μμ intersect in a

region corresponding to x-axis
values well below 0

This region turns out to overlap
substantially with the R

D(*)
 region

(green)



  

Beyond EFTs:

The picture within “simplified” models



  



  The U
1
 leptoquark

 U
1
  ~  (3, 1)

2/3
  is the only single mediator known to yield
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[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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 Define the couplings:
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⊃ glq

ji Q̄i γμ L j U μ + h.c.

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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 Define the couplings:

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

∝ glq
22 glq

23
&δRK (*) in μ channel

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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  The U
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  is the only single mediator known to yield
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 Define the couplings:

∝ glq
32

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

glq
33

&δRD(*) in τ channel

∝ glq
22 glq

23
&δRK (*) in μ channel

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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 Define the couplings:

∝ glq
32

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

glq
33

&δRD(*) in τ channel

∝ glq
22 glq

23
&δRK (*) in μ channel

☞ these couplings also famously constrained by

τ → ℓ  νν   [Feruglio-Paradisi-Pattori]

(hence far from obvious that an R
D(*)

 description achievable)

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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glq
32 vs . glq
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  U
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 LQ:

Model-dependent constraint
See discussion in 

[Cornella-Fuentes-Isidori, 2019;
 Calibbi-Crivellin-Li, 2018;

Bordone et al., 2018]
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glq
32 vs . glq

33
  U

1
 LQ:

R
D(*)

 and τ → ℓ  νν  select 
a non-trivial region

We pick a benchmark point,
then constrain the other two
couplings





Model-dependent constraint
See discussion in 

[Cornella-Fuentes-Isidori, 2019;
 Calibbi-Crivellin-Li, 2018;

Bordone et al., 2018]
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glq
22 vs . g lq

23
  U

1
 LQ:

(dashed = before Moriond)

The plane of muonic couplings
shows that the picture works
better after than before Moriond

 The R
K(*)

 and b → s μμ regions
now perfectly overlap
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  U
1
 LQ:  direct constraints

Aren’t  such  tauonic couplings also constrained by direct searches?
E.g. pp → τ τ   or   τν  

With               (as required by R
D(*)

)
LUV constraints are stronger 
than direct ones

glq
3 i≠0

For the sake of comparison, 
we tuned coupling values to those
used in [Baker-Fuentes-Isidori-König]

Lower bound M
U
 > 2.7 TeV

due to the large couplings 
chosen here (e.g.              )glq

32≈2.1

I.e. it  doesn’t apply in general
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