Seeking axion-like particles through flavor observables

Olcyr Sumensari

hep-ph/1901.02031 and 1904.XXXXX

Portorož, March 18, 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674896.

Motivation

- The SM Higgs sector is the <u>simplest possibility</u> to accommodate experimental observations.
- Hierarchy, flavor and strong-CP problems remain unsolved.
- Maybe there exist more scalar states?
- What if these particles are lighter than h(125)?
 - \Rightarrow <u>Renewed interest</u> in light pseudoscalars (ALPs) in recent years.
 - \Rightarrow Rich phenomenology at existing/planned experiments!

$ALP \equiv (light) pseudoscalar$

... with derivative and/or anomalous couplings:

Light pseudoscalars

Why are they interesting?

They appear in many models beyond the SM:

 Strong CP-problem, pNGB of a spontaneously broken symmetries, extensions of the Higgs sector (e.g. 2HDM, NMSSM), mediators to a hidden sector...
 [See talks by Di Luzio, Soreq and Ziegler]

They can explain phenomenological puzzles:

```
• e.g. (g-2)_{\mu} discrepancy.
```

[Marciano et al. '16]

This talk: How can we probe ALPs in flavor experiments?

- i) Flavor-changing probes of ALPs;
- ii) ALP production via $e^+e^- \rightarrow \gamma a$ at *B*-factories.

FCNC constraints on ALP couplings

[Gavela, Houtz, Quilez, del Rey, OS. 1901.02031]

Our setup:

• Effective dim-5 Lagrangian:

[Georgi et al. '86]

$$\begin{split} \mathcal{L}_{\text{eff}}^{d=5} \supset &\frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{m_{a}^{2} a^{2}}{2} + c_{a \Phi} \, i \frac{\partial^{\mu} a}{f_{a}} \Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \\ &- c_{G} \, \frac{a}{f_{a}} \, G_{\mu\nu}^{a} \widetilde{G}^{\mu\nu,a} - c_{B} \, \frac{a}{f_{a}} B_{\mu\nu} \widetilde{B}^{\mu\nu} - c_{W} \, \frac{a}{f_{a}} W_{\mu\nu}^{a} \, \widetilde{W}^{\mu\nu,a} + \dots \,, \end{split}$$

Our setup:

• Effective dim-5 Lagrangian:

[Georgi et al. '86]

$$\mathcal{L}_{\text{eff}}^{d=5} \supset \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{m_{a}^{2} a^{2}}{2} + c_{a\Phi} i \frac{\partial^{\mu} a}{f_{a}} \Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi - c_{G} \frac{a}{f_{a}} G_{\mu\nu}^{a} \widetilde{G}^{\mu\nu,a} - c_{B} \frac{a}{f_{a}} B_{\mu\nu} \widetilde{B}^{\mu\nu} - c_{W} \frac{a}{f_{a}} W_{\mu\nu}^{a} \widetilde{W}^{\mu\nu,a} + \dots ,$$

• $c_{a\Phi}$ is equivalent to Yukawa-like interactions:

$$c_{a\Phi} i \frac{\partial^{\mu} a}{f_{a}} \Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \longrightarrow c_{a\Phi} i \frac{a}{f_{a}} \Big[\overline{Q} \, \underline{Y}_{u} \widetilde{\Phi} \, u_{R} - \overline{Q} \, \underline{Y}_{d} \Phi \, d_{R} - \overline{L} \, \underline{Y}_{\ell} \Phi \, \ell_{R} \Big] + \text{h.c.}$$

 \Rightarrow Flavor violation controlled by SM Yukawas!

• Working assumption: Derivative couplings to fermions neglected above – the loop effects from c_{att} are already described by $c_{a\Phi}$.

FCNC decays into ALPs: $K \rightarrow \pi a$, $B \rightarrow Ka$...

One-loop matching: $\mathcal{L}_{\text{eff}} \supset -g^a_{sd} \ (\partial_\mu a) \ \bar{s} \gamma^\mu P_L d$ $x_q = m_q^2/m_W^2$

FCNC decays into ALPs: $K \rightarrow \pi a, B \rightarrow Ka...$

One-loop matching:

$$\mathcal{L}_{\text{eff}} \supset -g^a_{sd} (\partial_\mu a) \bar{s} \gamma^\mu P_L d$$

$$\boldsymbol{g_{sd}^a} = g_w^2 \sum_{q=u,c,t} \frac{V_{qs} V_{qd}^*}{16\pi^2} \left[\frac{3 \boldsymbol{c_W}}{f_a} g(x_q) - \frac{\boldsymbol{c_a \Phi}}{2 f_a} x_q \log\left(\frac{f_a}{m_q}\right) \right]$$

FCNC decays into ALPs: $K \rightarrow \pi a$, $B \rightarrow Ka$...

$$g^{a}_{sd} = g^{2}_{w} \sum_{q=u,c,t} \frac{V_{qs} V^{*}_{qd}}{16\pi^{2}} \left[\frac{3 \, \boldsymbol{c}_{\boldsymbol{W}}}{f_{a}} g(x_{q}) - \frac{\boldsymbol{c}_{a\boldsymbol{\Phi}}}{2 \, f_{a}} x_{q} \log\left(\frac{f_{a}}{m_{q}}\right) \right]$$

• *c_W* induces <u>finite</u> contributions – *GIM mechanism*. [Izaguirre et al. '16]

• $c_{a\Phi}$ contributions are logarithmically sensitive to f_a (in the $f_a \gg m_{\rm EW}$ limit). For concrete models – e.g. 2HDM(+S):

[Pich et al. '14], [Dror et al. '18], [Arnan, Becirevic, Mescia, OS. 1703.03426]...

ALP decays

Which observables?

$$\mathcal{L}_{\text{eff}}^{d=5} \supset -c_G \frac{a}{f_a} G^a_{\mu\nu} \widetilde{G}^{\mu\nu,a} - c_B \frac{a}{f_a} B_{\mu\nu} \widetilde{B}^{\mu\nu} - c_W \frac{a}{f_a} W^a_{\mu\nu} \widetilde{W}^{\mu\nu,a}$$

$$+ c_{a\Phi} i \frac{a}{f_a} \Big[\overline{Q} Y_u \widetilde{\Phi} u_R - \overline{Q} Y_d \Phi d_R - \overline{L} Y_\ell \Phi \ell_R \Big] + \text{h.c.}$$

The relevant observables depend on ALP couplings, as well as possible interactions to a hidden sector.

We consider two <u>benchmark scenarios</u>: [Gavela et al. '19]

- i) <u>Invisile ALP</u>: $\mathcal{B}(a \to inv) = 1$.
 - \Rightarrow Observables: $K \rightarrow \pi + \text{inv}, B \rightarrow K + \text{inv}.$
- ii) <u>Visible ALP</u>: $a \to \gamma\gamma$, $\ell\ell$, and hadrons via c_{aW} and $c_{a\Phi}$. \Rightarrow Observables: $K \to \pi a (\to ee, \mu\mu, \gamma\gamma)$, $B \to Ka (\to ee, \mu\mu, \gamma\gamma)$...

I. The invisible scenario

see also [Izaguirre.'16]

- Most stringent limits come from $K \rightarrow \pi \nu \bar{\nu}$ searches [E787, E949].
- What if $\{c_{a\Phi}, c_{aW}\}$ are simultaneously considered?

I. The invisible scenario

Two-coupling analysis

 \Rightarrow Other flavor observables can be helpful too!

[2nd part of this talk!]

II. The visible scenario

ALP decay rates

ALP decays induced by $c_{a\Phi}$ and c_W :

see also [Bauer et al. '17]

 \Rightarrow Many possible exp. signatures depending on m_a and $\{c_{a\Phi}, c_W\}$.

See talk by Soreq for $\Gamma(a \to had)$ in $m_a \in (1,3)$ GeV.

II. The visible scenario

Constraints on visible decays

- Most stringent limits come from LHCb searches for displaced vertices in $B \to K^{(*)} a(\to \mu \mu)$ [LHCb. '15, '16] see also [Dobrich et al. '18].
- Complementarity between *K* and *B*-meson decays. Opportunities for fixed-target facilities [e.g. SHiP]. [cf. back-up for two-coupling analysis]

Revisiting ALP production at B-factories

[Merlo, Pobbe, Rigolin, OS. To appear]

What else can be done in flavor experiments?

ALPs can be produced in e^+e^- colliders via

$$c_{a\gamma\gamma} \equiv c_B \, \cos^2 \theta_W + c_W \, \sin^2 \theta_W$$

- \Rightarrow Direct probe of the ALP-photon coupling at low-energies.
- \Rightarrow Prospects for Belle-II explored in many works:

[Dolan et al. '18], [deNiverville et al. '18]...

see also [Belle-II Physics Book]

Remainder of this talk:

 \Rightarrow Discuss the subtleties of these searches at *B*-factories.

What is different at *B*-factories?

B-factories operate at specific Υ resonances $\sqrt{s} = m_{\Upsilon(nS)}$:

i) How important are the resonant contributions?

ii) Working at $\sqrt{s} = m_{\Upsilon(nS)}$ allows us to probe another coupling:

$$\mathcal{L}_{ ext{eff}}^{d=5} \supset \frac{c_{abb}}{2 f_a} \frac{\partial_{\mu} a}{2 f_a} \bar{b} \gamma^{\mu} \gamma_5 b \,.$$

What is the interplay between $c_{a\gamma\gamma}$ and c_{abb} ?

[NB. $c_{abb} = -c_{a\Phi}$ in the 1st part of this talk]

How large are the resonant contributions?

Non-resonant vs. resonant cross-section

• Non-resonant:

[Marciano et al. '16, Dolan et al. '18]

$$\sigma(s)_{
m non\ res.} \propto rac{c_{a\gamma\gamma}^2}{f_a^2} \left(1-rac{m_a^2}{s}
ight)^3$$

• **Resonant** (*naive Breit-Wigner*):

[Merlo, Pobbe, Rigolin, OS. To appear]

$$\sigma(s)_{\rm res.} = \sigma_{\rm peak} \, \frac{m_{\Upsilon}^2 \Gamma_{\Upsilon}^2}{(s - m_{\Upsilon})^2 + m_{\Upsilon}^2 \Gamma_{\Upsilon}^2} \, \mathcal{B}(\Upsilon \to \gamma a) \,.$$

 \Rightarrow Effects overlooked so far in theory papers computing $\sigma(e^+e^- \rightarrow \gamma a)$.

To be careful: Non-negligible beam-energy uncertainty σ_W at *B*-factories

$$\Rightarrow \Gamma_{\Upsilon(nS)} \ll \sigma_W \approx 5 \text{ MeV for } n = 1, 2, 3.$$

 \Rightarrow Naive computation overestimates the resonant cross-section.

The visible resonant cross-section reads:

[Eidelman et al. 1601.07987]

$$\begin{split} \langle \sigma_{\rm res} \rangle_{\rm vis} &= \int \frac{\sigma_{\rm res}(s)}{\sqrt{2\pi}\sigma_W} \exp\left[-\frac{(\sqrt{s}-m_\Upsilon)^2}{2\,\sigma_W^2}\right] {\rm d}\,\sqrt{s}\,,\\ \Gamma_\Upsilon &\stackrel{\Gamma_\Upsilon \ll \sigma_W}{=} \rho\,\sigma_{\rm peak}\,\mathcal{B}(\Upsilon(nS) \to \gamma a)\,, \end{split}$$

where ρ is the cross-section suppression factor (for the narrow resonances):

$$\rho = \sqrt{\frac{\pi}{8}} \frac{\Gamma_{\Upsilon}}{\sigma_W} \approx 10^{-3} \,.$$

For scenarios with $|c_{a\gamma\gamma}| \gg |c_{abb}|$, the non-resonant contribution dominates, but the resonant one is non-negligible:

$\Upsilon(nS)$	$\Gamma_{\Upsilon} \; [\text{keV}]$	$\sigma_{ m peak}~[{\sf nb}]$	ρ	$\langle \sigma_{ m res} angle_{ m vis} / \sigma_{ m non \ res.}$
$\Upsilon(1S)$	54.02	$3.9(18) \times 10^3$	6.1×10^{-3}	0.53(5)
$\Upsilon(2S)$	31.98	$2.8(2)\times10^3$	$3.7 imes 10^{-3}$	0.21(3)
$\Upsilon(3S)$	20.32	$3.0(3) \times 10^3$	$2.3 imes 10^{-3}$	0.16(3)
$\Upsilon(4S)$	20.5×10^3	2.10(10)	0.83	$3.0(3) \times 10^{-5}$

NB. $c_{abb} \equiv 0.$

- \Rightarrow Resonant contributions amount to $\mathcal{O}(10\%)$ – $\mathcal{O}(50\%)$ corrections to $\sigma_{\rm tot}$.
- \Rightarrow *B*-factories operating at $\Upsilon(4S)$ [i.e. above $B\overline{B}$ production threshold] can directly probe the non-resonant contribution.

Which searches can be performed at B-factories?

i) Purely resonant: $\Upsilon(1S)$ reconstructed from $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ or $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ decays. cf. e.g. [BaBar, 1007.4646]

Direct probe of

$$\mathcal{B}(\Upsilon(1S) \to \gamma a) \times \mathcal{B}(a \to \dots) \propto \left[\frac{c_{a\gamma\gamma}}{f_a} \left(1 - \frac{m_a^2}{m_\Upsilon^2} \right) - 2 \frac{c_{abb}}{f_a} \right]^2$$

 $\Rightarrow {\rm See}~[{\rm Wilczek.~'77]~for~the~computation~of~} c_{abb}~{\rm contribution,~and} \\ [{\rm Masso.~'95}]~{\rm for~} c_{a\gamma\gamma}.$

- \Rightarrow We consider *both couplings*: possibility of <u>destructive interference</u>!
- ii) **Purely non-resonant**: for $\sqrt{s} = m_{\Upsilon(4S)}$, the resonant contribution is negligible so one can directly probe $c_{a\gamma\gamma} \Rightarrow No exp.$ searches thus far!
- iii) Mixed (non-)resonant: if $\Upsilon(nS)$ (n = 1, 2, 3) is not reconstructed, then both resonant and non-resonant contributions become relevant. [cf. back-up] Many searches at $\Upsilon(3S)$, cf. e.g. [BaBar, 0808.0017]

Illustration: Invisible scenario

• Complementarity: Unconstrained parameters from $\Upsilon(1S)$ decays [Belle, '18] are excluded by searches at $\Upsilon(3S)$ [BaBar, '08].

Caveat: background in $\Upsilon(3S)$ searches.

[cf. back-up]

Summary and perspectives

Summary and perspectives

• FCNC observables provide the strongest constraints on ALPs in masses in the MeV-GeV range.

NA62, LHCb and Belle-II.

• Effective operators can interfere destructively in $K \to \pi a$ and $B \to K a$, leaving unconstrained regions in the parameter space.

LHC and/or flavor observables might be helpful.

- Most general formulae for $e^+e^- \rightarrow \gamma a$ at *B*-factories are provided, including resonant and non-resonant contributions, as well as general ALP interactions. Searches performed at different $\Upsilon(nS)$ resonances are complementary.
- Very rich data-set in existing/forthcoming flavor-physics experiments can be useful to test scenarios with light new physics states.

High-precision era in flavor physics!

Thank you!

This project has received support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896.

II. Visible scenario

[Gavela, Houtz, Quilez, del Rey, OS. '19]

II. Visible scenario

[Gavela, Houtz, Quilez, del Rey, OS. '19]

Comments on other analyses

BaBar dark-photon search in the mono- γ channel [BaBar. 1702.0332] has been recast by [Dolan et al. '18] $\Rightarrow \approx 2 \times$ stronger constraints on $c_{a\gamma\gamma}$.

Interesting, but one should be careful:

- [BaBar. '17] combines data collected at different runs (resonant effects!?).
- Detection efficiencies are different for dark photons and ALPs [How much?].

On mixed (non-)resonant searches

- If the Υ decay is not reconstructed, both resonant and non-resonant contributions must be considered!
- e.g. for analyses at $\Upsilon(3S)$ [BaBar, 0808.0017], the limits on $\mathcal{B}(\Upsilon \to \gamma a)$ should be rescaled by a factor:

$$\frac{\langle \sigma_{\rm res.} + \sigma_{\rm non \ res.} \rangle_{\rm vis}}{\langle \sigma_{\rm res.} \rangle_{\rm vis}} \approx 1 + \frac{\sigma_{\rm non \ res.}}{\langle \sigma_{\rm res.} \rangle_{\rm vis}} > 1$$

 \Rightarrow Limits on branching fraction are $\times 7$ more stringent if $|c_{a\gamma\gamma}| \gg |c_{abb}|$!

 \Rightarrow Effects overlooked in theory papers, cf. e.g. [Cid Vidal et al. '18]

Small caveat: <u>Background</u> is often determined by using <u>off-resonance samples</u>, which contain the non-resonant contributions (peak in missing-mass distribution).

Figure 1: Sample fit to the high-energy dataset $(122 \times 10^6 \Upsilon(3S)$ decays). The bottom plot shows the data (solid points) overlaid by the full PDF curve (solid blue line), signal contribution with $m_{A^0} = 5.2$ GeV (solid red line) $e^+e^- \rightarrow \gamma\gamma$ contribution (dot-dashed green line), and continuum background PDF (black dashed line). The top plot shows the pulls $p = (\text{data} - \text{fit})/\sigma(\text{data})$ with unit error bars.

[Merlo, Pobbe, Rigolin, OS. To appear]

Rescaled limits on
$$c_{a\gamma\gamma}$$
 from $\mathcal{B}(\Upsilon(3S) \to \gamma a) \times \mathcal{B}(a \to \text{inv})$: **NB.** $c_{abb} \equiv 0$.

[BaBar, 0808.0017]

 \Rightarrow **More constraining** than limits from tagged $\Upsilon(1S)$ decays!

[BaBar, 1007.4646], [Belle, 1809.05222]

 $\Rightarrow \underline{\text{Similar conclusions}} \text{ apply to } \Upsilon(3S) \rightarrow \gamma a \text{, followed by } a \rightarrow \mu \mu \text{ [BaBar, 0905.4539],} a \rightarrow gg \text{ [BaBar, 1108.3549]...}$

$\Upsilon \to \gamma a$ in full generality

$$\mathcal{B}(\Upsilon \to \gamma a) = \frac{\alpha_{\rm em}}{216\,\Gamma_{\Upsilon}} m_{\Upsilon} f_{\Upsilon}^2 \left(1 - \frac{m_a^2}{m_{\Upsilon}^2}\right) \left[\frac{c_{a\gamma\gamma}}{f_a} \left(1 - \frac{m_a^2}{m_{\Upsilon}^2}\right) - 2\frac{c_{abb}}{f_a}\right]^2,$$

- $c_{a\gamma\gamma}$ contribution determined by decay constant (LQCD and/or exp).
- *c_{abb}* contribution far more intricate QCD-structure dependent emission. [Wilczek. '77]