# Singleton Portals to the Twin Sector

#### Fady Bishara

Portoroz 2019 16 April

FB, C. B. Verhaaren [1811.05977] – accepted for publication in JHEP









#### Motivation

- An elementary scalar (the Higgs) is sensitive to New Physics at higher scales light mass implies tuning
- Since Higgs couples strongly to the top → symmetry solution with colored partners
- But LHC searches for NP has put stringent constraints on colored top partners
- Neutral naturalness remains an allowed and attractive paradigm
- However, mainly accessible via the Higgs portal not much information

What can we do to unravel the structure of a twin sector?

## The mirror twin Higgs (MTH)

Chacko, Goh, Harnik, hep-ph/0506256

$$V(\Phi) = -m^2 |\Phi|^2 + \lambda |\Phi|^4$$

Where  $\Phi \sim \square$  of global SU(4)

The VEV of  $\Phi$  then breaks  $SU(4) \to SU(3)$  which results in **7 goldstones** 

Mirror the SM and gauge weak isospin  $SU(2)_A \times SU(2)_B \subset SU(4)$  under which  $\Phi$  transforms as

$$\Phi = \begin{pmatrix} H_A \\ H_B \end{pmatrix}$$

 $\Rightarrow$  6 goldstones eaten by  $W_{A,B}$ ,  $Z_{A,B}$ ; 1 is the SM Higgs

#### MTH cont'd and FTH

Chacko, Goh, Harnik, hep-ph/0506256

 Quadratic terms are genrated radiatively but if A and B sector gauge couplings are symmetric under discrete symmetry, then these terms are SU(4) invariant and do not give mass to the goldstone

so, 
$$\mathcal{L}_{A} \stackrel{\mathbb{Z}_{3}}{\longleftrightarrow} \mathcal{L}_{5}$$
 etc.

FRATERNAL TWIN HIGGS

(FTH) = mirror what you need 
$$\rightarrow 3^{rd}$$
 gen. fermions + gauge



FTH: Craig, Katz, Strassler, Sundrum [1501.05310];

#### Renormalizable portals to NP



## Singleton portals

- · After "EWSB", the physical Higgses and the photons of the A and B sectors can mix because they are neutral under A & B gauge groups
- However, there is another class of gauge-singlet states that can mix the two sector without violating any symmetries:
  - They have no twin partner, but,
  - They transform under the discrete Z<sub>2</sub> symmtery

$$\psi \xrightarrow{Z_2} \pm \psi$$
,  $\psi (\mathcal{O}_A \pm \mathcal{O}_B)$ 

## Singleton portals

Scalar portal

$$\Delta \mathcal{L} = \kappa \phi \left( |H_A|^2 \pm |H_B|^2 \right) + \lambda_{H\phi} |\phi|^2 \left( |H_A|^2 + |H_B|^2 \right)$$

Fermionic portal

$$-\Delta \mathcal{L} = (\overline{L}_A Y_A \nu_R) H_A \pm (\overline{L}_B Y_B \nu_R) H_B + \frac{m_R}{2} \overline{\nu}_R^c \nu_R + \text{h.c.}$$

Vector portal

$$-\frac{\varepsilon}{2} \left( B_A^{\mu\nu} \pm B_B^{\mu\nu} \right) X_{\mu\nu}$$

$$g_X X^{\mu} \left[ \overline{f}_A \gamma_{\mu} \left( C_V + \gamma_5 C_A \right) f_A \pm \overline{f}_B \gamma_{\mu} \left( C_V + \gamma_5 C_A \right) f_B \right]$$

## Vector singleton portal

Consider the Lagrangian

$$\mathcal{L}_X = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu} + g_X X_{\mu} \left( J_A^{\mu} \pm J_B^{\mu} \right)$$

- · It is convenient to define  $r_X = g_X/g_2^{\scriptscriptstyle \mathrm{SM}}$
- Look at three benchmark scenarios:

| Model             | $x_A^q$     | $x_A^{t,b}$ | $x_A^e$ | $x_A^\mu$ | $x_A^{\tau}$ | $x_B^q$     | $x_B^{t,b}$ | $x_B^e$ | $x_B^{\mu}$ | $x_B^{\tau}$ |
|-------------------|-------------|-------------|---------|-----------|--------------|-------------|-------------|---------|-------------|--------------|
| $(B-L)_{A-B}$     | $^{1}/_{3}$ | $^{1}/_{3}$ | 1       | 1         | 1            | $^{1}/_{3}$ | $^{1}/_{3}$ | 1       | 1           | 1            |
| $(B-L)_{3,A-3,B}$ |             | $^{1}/_{3}$ |         |           | 1            |             | $^{1}/_{3}$ |         |             | 1            |
| $L_{\mu_A-\mu_B}$ |             |             |         | 1         |              |             |             |         | 1           |              |

# Vector singleton: kinetic mixing



$$\sim \frac{g_X^2 g_Y^2}{576\pi^4} \frac{q^2}{m_X^2} \sum_{f_A} Y_{f_A} x_{f_A} \ln \frac{m_{f_A}^2}{m_X^2} \sum_{f_B} Y_{f_B} x_{f_B} \ln \frac{m_{f_B}^2}{m_X^2},$$

# Consequences: couplings of Z bosons



linear in  $\varepsilon$ !

 $\triangleright$  Coupling of SM Z to B fermions

 $\triangleright$  Coupling os  $Z_B$  to SM fermions

coupling of A & B fermions to the X gauge boson  $\rightarrow$  non-universal dep. on gauged currents!

#### Indirect bounds



#### Searches at the LHC





### Summary and outlook

- · Singleton portals to the twin sector offer a phenomenologically rich avenue to explore the structure of the twin sector
- · Can directly produce twin Z boson and twin photon at hadron colliders!
- · Scalar singleton can explain origin of soft  $\mathbb{Z}_2$  breaking
- The vector portal gauge boson, if realized, would be within reach of HL-LHC and future colliders

# Thank you!